举一反三
- Let X be a normal random variable with mean 20 and standard deviation 4. The 90th percentile of X is ____________.
- 中国大学MOOC: A population distribution is normal with a mean of 18 and standard deviation of 4. A sample of 16 observations is selected and a sample mean computed. What is the probability that the sample mean is more than 18?
- 2.Which of the following about the normal distribution is NOT true A: Theoretically, the mean, median, and mode are the same. B: About 2/3 of the observations fall within ±1 standard deviation from the mean. C: It is a discrete probability distribution. D: Its parameters are the mean, μ, and standard deviation, σ.
- Which of the following about the normal distribution is NOT true? A: Theoretically, the mean, median, and mode are the same B: About 68% of the observations fall within ±1 standard deviation from the mean C: Its parameters are the mean, μ, and standard deviation, σ D: It is a discrete probability distribution.
- Given an infinite population with a mean of 75 and a standard deviation of 12, the probability that the mean of a sample of 36 observations, taken at random from this population, exceeds 78 is:
内容
- 0
设方程\(z^2+y^2+z^2 = 4z\)确定函数\(z=z(x,y)\),则\( { { {\partial ^2}z} \over {\partial {x^2}}} =\) A: \( { { { { (2 - z)}^2} + {x^2}} \over { { {(2+ z)}^3}}}\) B: \( { { { { (2 - z)}^2} + {x^2}} \over { { {(2 - z)}^3}}}\) C: \( { { { { (2 - z)}^2} -{x^2}} \over { { {(2 - z)}^3}}}\) D: \( { { { { (2 + z)}^2} + {x^2}} \over { { {(2 - z)}^3}}}\)
- 1
中国大学MOOC: 若int x=2,y=3,z=4 则表达式x<z?y:z的结果是2.
- 2
已知int x=1,y=2,z=3;以下语句执行后x,y,z的值是( ). if(x>y) z=x; x=y; y=z; A: x=1, y=2, z=3 B: x=2, y=3, z=3 C: x=2, y=3, z=1 D: x=2, y=3, z=2
- 3
已知int x=1,y=2,z=3;执行if(x>y) z=x;x=y;y=z;后x,y,z的值为( ) A: x=1,y=2,z=3 B: x=2,y=3,z=3 C: x=2,y=3,z=1 D: x=2,y=3,z=2
- 4
设方程\({x^2} + {y^2} + {z^2} = 2Rx\)确定函数\(z=z(x,y)\),则\( { { \partial z} \over {\partial x}}=\) A: \( { { \partial z} \over {\partial x}} = { { R +x} \over z}\) B: \( { { \partial z} \over {\partial x}} =- { { R +x} \over z}\) C: \( { { \partial z} \over {\partial x}} = { { R - x} \over z}\) D: \( { { \partial z} \over {\partial x}} =- { { R - x} \over z}\)