设f(x)=(1/(1+x^2))+x^3∫(0到1)f(x)dx,求∫(0到1)f(x)dx
举一反三
- 定积分f(x)=x^2-x∫(0到2)f(x)dx+2∫(0到1)f(x)dx,求f(x)
- 设$f(x)$是连续的奇函数,则定积分$\int_{-1}^1 f(x)dx=$ A: $2\int_{-1}^0 f(x)dx$ B: $\int_{-1}^0 f(x)dx$ C: $\int_{0}^1 f(x)dx$ D: $0$
- 设f(x)=/2x+1x≤1求∫(上限2,下限0)f(x)dx和∫(上限4,下限1)f(x-2)dx
- 【单选题】设X为连续型随机变量, 其概率密度: f(x)=Ax2, x∈(0,2); 其它为0. 求(1)A=(); (2) 分布函数F(x)=(); (3) P{1<X<2} (10.0分) A. (1)3/8; (2)x<0, F(x)=0; 0≤x<2, F(x)=1/8x³; x≥2, F(x)=1; (3) 7/8 B. (1)5/8; (2)x<0, F(x)=0; 0≤x<2, F(x)=1/8x³; x≥2, F(x)=0 (3) 1/8
- 设f(x)在积分区间上连续,则sinx?[f(x)+f(-x)]dx等于:() A: -1 B: 0 C: 1 D: 2
