设A,B都是n阶可逆矩阵(n>1),则下列式子成立的是()
A: |AB|=|A||B|
B: (A+B)-1=A-1+B-1
C: AB=BA
D: |A+B|-1=|A|-1+|B|-1
A: |AB|=|A||B|
B: (A+B)-1=A-1+B-1
C: AB=BA
D: |A+B|-1=|A|-1+|B|-1
A
举一反三
- 设A,B都是n阶可逆矩阵(n>1),则下列式子成立的是( ) A: |AB |=|A ||B| B: (A+B)<sup>-1</sup>=A<sup>-1</sup>+B<sup>-1</sup> C: AB=BA D: |A+B|<sup>-1</sup>=|A|<sup>-1</sup>+|B|<sup>-1</sup>
- 设A和B都是n阶矩阵,则必有( ) A: |A+B|=|A|+|B| B: AB=BA C: |AB|=|BA| D: (A+B)-1=A-1+B-1
- 设A和B都是n阶矩阵,则必有( ) A: |A+B|=|A|+|B|。 B: AB=BA。 C: |AB|=|BA|。 D: (A+B)-1=A-1+B-1。
- 设A和B都是n×n矩阵,则必有() A: ∣A+B∣=∣A∣+∣B∣ B: AB=BA C: ∣AB∣=∣BA∣ D: (A+B) -1 =A -1 +B -1
- 设A和B都是n阶矩阵,则必有( ) A: |A+B|=|A|+|B| B: AB=BA C: |AB|=|BA| D: (A+B)—1=A—1+B—1
内容
- 0
设A,B,A+B均为n阶可逆矩阵,则(A-1+B-1)-1=() A: A+B B: A-1+B-1 C: (A+B)-1 D: A(A+B)-1B
- 1
设A, B均为n(n2)阶方阵, 则下列成立是( ) A: |A+B|=|A|+|B| B: AB=BA C: |AB|=|BA| D: (A+B)1=B1+A1
- 2
设A和B为n阶方阵,则必有______ A: |A+B|=|A|+|B| B: AB=BA C: |AB|=|BA| D: (A+B)-1=A-1+B-1
- 3
设A、B、A+B、A-1+B-1均为n阶可逆矩阵,则(A+B)^(-1)为( )。 A: A^(-1)+B^(-1) B: A+B C: (A^(-1)+B^(-1))^(-1) D: B^(-1)(A^(-1)+B^(-1))^(-1)A^(-1)
- 4
设A,B均为n阶可逆矩阵,则下列各式中正确的是( )。 A: (A+B)T=AT+BT B: (A+B)-1=A-1+B-1 C: (AB)-1=A-1B-1 D: (AB)T=ATBT