• 2022-06-29
    已知三阶矩阵`A`的特征值为`-1,1,2`,`A^**`表示`A`的伴随阵,则矩阵` B=(3A^**)^{-1} ` 的特征值为( )
    A: `1,-1,2`;
    B: `\frac{1}{6},-\frac{1}{6},-\frac{1}{3}`;
    C: `-\frac{1}{6},\frac{1}{6},\frac{1}{3}`;
    D: `\frac{1}{2},-\frac{1}{2},-1`。
  • B

    内容

    • 0

      已知函数由下列方程确定$x^2 - y^2=1 $,则$\frac{d^2 y}{d^2 x} =$( )。 A: $\frac{1}{y^2}$ B: $-\frac{1}{y^2}$ C: $-\frac{1}{y^3}$ D: $\frac{1}{y^3}$

    • 1

      设随机变量 \( X \) 在区间 \( \left[ {2,5} \right] \) 上服从均匀分布,对 \( X \) 进行三次独立的观测中,则刚好有两次的观测值大于3的概率为( )。 A: \(C_3^1 (\frac{1}{3})^2(\frac{2}{3})\) B: \(C_3^1 (\frac{1}{3})(\frac{2}{3})\) C: \(C_3^2 (\frac{1}{3})^2(\frac{2}{3})\) D: \(C_3^2 (\frac{1}{3})(\frac{2}{3})^2\)

    • 2

      \(函数f(x,y)=\ln(x+y+1)在点(0,0)处的带佩亚诺余项的三阶泰勒公式为(\,)\) A: \(x+y-\frac{1}{2}(x+y)^2+\frac{1}{6}(x+y)^3+o((\sqrt{x^2+y^2})^3)\) B: \(x+y-\frac{1}{2}(x+y)^2+\frac{1}{3}(x+y)^3+o((\sqrt{x^2+y^2})^3)\) C: \(x+y-\frac{1}{3}(x+y)^2+\frac{1}{6}(x+y)^3+o((\sqrt{x^2+y^2})^3)\) D: \(x+y-\frac{1}{2}(x+y)^2-\frac{1}{3}(x+y)^3+o((\sqrt{x^2+y^2})^3)\)

    • 3

      将函数\(f(x)=\sin^4 x\)展开成Fourier级数为 ____ . A: \(f(x) = \frac{3}{8}-\frac{1}{2}\cos 2x +\frac{1}{8}cos 4x\) B: \(f(x) = \frac{1}{4}-\frac{1}{2}\cos x +\frac{3}{8}cos 4x\) C: \(f(x) = \frac{1}{4}-\frac{1}{2}\sin 2x -\frac{3}{8}cos 4x\) D: \(f(x) = \frac{3}{8}-\frac{1}{2}\sin x -\frac{1}{8}cos 4x\)

    • 4

      For the integral $\int_0^{+\infty}\frac{dx}{(x^2+p^2)(x^2+q^2)}$, which of the following statements are CORRECT? A: $\frac{1}{q^2-p^2}[\frac{1}{p}-\frac{1}{q}]\frac{\pi}{2},p>0 \ q>0;$ B: $\frac{1}{q^2-p^2}[\frac{1}{q}+\frac{1}{p}]\frac{\pi}{2}, -p>0 \ -q>0;$ C: $\frac{1}{q^2-p^2}[\frac{1}{p}-\frac{1}{q}]\frac{\pi}{2}, p>0 \ -q>0;$ D: $\frac{1}{p^2-q^2}[\frac{1}{q}+\frac{1}{p}]\frac{\pi}{2}, -p>0 \ q>0.$