• 2022-06-30
    抛物线\(y = {x^2} - 4x + 3\)在其顶点的曲率与曲率半径为( ).
    A: \(2,{1 \over 2}\)
    B: \({1 \over 2},2\)
    C: \(3,{1 \over 3}\)
    D: \({1 \over 3},3\)
  • A
    本题目来自[网课答案]本页地址:https://www.wkda.cn/ask/eozomozjemzettoo.html

    内容

    • 0

      计算\(\int_L {xydx} \),其中\(L\) 是抛物线\(y^2=x\) 上从点\((1, - 1)\) 到点\((1,1)\) 的一段弧。 A: \({3 \over 4}\) B: \({1 \over 2}\) C: \({2 \over 3}\) D: \({4 \over 5}\)

    • 1

      已知直线的一般方程\( \left\{ {\matrix{ {x - 2y - z + 4 = 0} \cr {5x + y - 2z + 8 = 0} \cr } } \right. \), 则其点向式方程为( ) A: \( { { x - 2} \over 2} = {y \over { - 3}} = { { z - 4} \over {11}} \) B: \( {x \over 5} = {y \over { - 3}} = { { z - 4} \over {11}} \) C: \( { { x - 2} \over 5} = { { y + 1} \over { - 3}} = { { z - 4} \over {11}} \) D: \( { { x - 2} \over 2} = { { y + 1} \over { - 3}} = { { z - 4} \over {11}} \)

    • 2

      球面 \(x^2 + {y^2} + {z^2} = {a^2}\)含在圆柱面\({x^2} + {y^2} = ax\) 内部的那部分面积为 ( ) A: \(4{a^2}({\pi \over 2} - 1)\) B: \(4{a^2}({\pi \over 3} - 1)\) C: \(4{a^2}({\pi \over 2} + 1)\) D: \(4{a^2}({\pi \over 3} + 1)\)

    • 3

      以4,9,1为为插值节点,求\(\sqrt x \)的lagrange的插值多项式 A: \( {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) B: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) C: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x +1) + {1 \over {24}}(x - 4)(x - 9)\) D: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) - {1 \over {24}}(x - 4)(x - 9)\)

    • 4

      下列四个积分中,()是广义积分。 A: \( \int_0^2 { { 1 \over { { {(3 - x)}^2}}}dx} \) B: \( \int_0^6 { { {(x - 4)}^{ - {2 \over 3}}}dx} \) C: \( \int_0^1 { { 1 \over {1 + {x^2}}}dx} \) D: \( \int_1^2 { { 1 \over { { x^2}}}dx} \)