• 2022-10-29
    函数$\sin^2 x$的麦克劳林级数展开式中$x^2$项的系数为
    A: $-2$
    B: $-1$
    C: $0$
    D: $1$
  • D
    本题目来自[网课答案]本页地址:https://www.wkda.cn/ask/exaemjzooaopmjzo.html

    内容

    • 0

      下列函数在给定的变化过程中为无穷小的是 ( ) . A: \( { { \sin x} \over x} ( x \to 0)\) B: \(\ln x ( x \to {0^ + })\) C: \({2^{ - x}} ( x \to 1)\) D: \((1 - x)\sin {1 \over {x - 1}} ( x \to 1)\)

    • 1

      \( \sin x \)的麦克劳林公式为( ). A: \( \sin x = x - { { {x^3}} \over {3!}} + { { {x^5}} \over {5!}} - \cdots + {( - 1)^n} { { {x^{2n + 1}}} \over {\left( {2n + 1} \right)!}} + o\left( { { x^{2n + 2}}} \right) \) B: \( \sin x = 1 - { { {x^2}} \over {2!}} + { { {x^4}} \over {4!}} - { { {x^6}} \over {6!}} + \cdots + {( - 1)^n} { { {x^{2n}}} \over {\left( {2n} \right)!}} + o\left( { { x^{2n + 1}}} \right) \) C: \( \sin x = 1 + x + { { {x^2}} \over 2} + \cdots + { { {x^n}} \over {n!}} + o\left( { { x^n}} \right) \)

    • 2

      x→1时,sin(x)/(1-x^2)的极限是()。 A: 1 B: 0 C: /2 D: 1/2

    • 3

      \( \lim \limits_{x \to 0} { { \sqrt {1 + x\sin x} - \cos x} \over { { {\sin }^2}{x \over 2}}} = \)______ 。

    • 4

      求函数[img=192x40]17da653862ff7b6.png[/img]的导数; ( ) A: cos(x)/sin(x) - cot(x)*(cot(x)^2 + 1) B: cos(x)/sin(x) C: cot(x)*(cot(x)^2 + 1) D: cos(x)/sin(x) - cot(x)*(cot(x)^2 + 1)+cot(x)