设向量组α1=(1,3,6,2)T,α2=(2,1,2,-1)T,α3=(1,-1,a,-2)T线性相关,则a应满足条件()。
A: a=2
B: a≠2
C: a=-2
D: a≠-2
A: a=2
B: a≠2
C: a=-2
D: a≠-2
C
举一反三
- 若向量组α1=(1,2,-1,-2)T,α2=(2,t,3,1)T,α3=(3,1,2,-1)T线性相关,则t=()。 A: 1 B: 2 C: -2 D: -1
- 设向量组Αα1=(1,2,1,3)T,α2=(4,-1,-5,-6)T,2)T向量组B:β1=(-1,3,4,7)T,β2=(2,-1,-3,-4)T,试证明;
- 设向量α1=(1 0 1)T,α2=(1 a -1)T,α3=(a 1 1)T。如果β=(2 a2 -2)T不能用α1,α2,α3线性表示,那么a=()。 A: -2 B: -1 C: 1 D: 2
- 设α1=(1,3,4,-2)T,α2=(2,1,3,t)T,α3=(3,-1,2,0)T线性相关,则t=() A: 1 B: -1 C: 2 D: -2
- 设α1=(1,4,3,-1)T,α2=(2,t,-1,-1)T,α3=(-2,3,1,t+1)T,则 A: 对任意的t,α1,α2,α3必线性无关. B: 仅当t=-3时,α1,α2,α3线性无关. C: 若t=0,则α1,α2,α3线性相关. D: 仅t≠0且t≠-3,α1,α2,α3线性无关.
内容
- 0
已知向量α1=(1,2,1)T,α2=(2,3,a)T,α3=(1,a+2,-2)T,β1=(1,3,4)T,β2=(1,-1,a)T,且β1可以由α1,α2,α3线性表出,β2不能由α1,α2,α3线性表出,则α=______。
- 1
设向量组α1,α2,α3,β1线性相关,向量组α1,α2,α3,β2线性无关,则对于任意常数k,必有______. A: α1,α2,α3,kβ1+β2线性无关 B: α1,α2,α3,kβ1+β2线性相关 C: α1,α2,α3,β1+kβ2线性无关 D: α1,α2,α3,β1+kβ2线性相关
- 2
向量组α1=(1,0,1,2)T,α2=(1,1,3,1)T,α3=(2,一1,a+1,5)T线性相关,则a=__________.
- 3
设向量组α1=(1,-1,2,4)T,a2=(0,3,1,2)T,α3=(3,0,7,14)T,α4=(1,-2,2,0)T,α5=(2,1,5,10)T,则向量组α1,α2,α3,α4,α5的最大线性无关组是()。 A: α1,α2,α3 B: α1,α2,α4 C: α1,α4 D: α1,α2,α4,α5
- 4
如果向量组α1,α2,...,αs与β1,β2,...,βt等价,且α1,α2,...,αs线性相关,则β1,β2,...,βt也线性相关。