图示截面对z轴的抗弯截面模量等于( )。[img=173x144]18030bb53725925.png[/img]
A: [img=70x46]18030bb540a9693.png[/img]
B: [img=70x46]18030bb549f7b1b.png[/img]
C: [img=102x46]18030bb5547e526.png[/img]
D: [img=103x46]18030bb55e2858f.png[/img]
A: [img=70x46]18030bb540a9693.png[/img]
B: [img=70x46]18030bb549f7b1b.png[/img]
C: [img=102x46]18030bb5547e526.png[/img]
D: [img=103x46]18030bb55e2858f.png[/img]
举一反三
- 图示截面对z轴的抗弯截面模量等于( )。[img=173x144]1803717c97c2268.png[/img] A: [img=70x46]1803717ca06201b.png[/img] B: [img=70x46]1803717ca98c95d.png[/img] C: [img=102x46]1803717cb531acc.png[/img] D: [img=103x46]1803717cc053756.png[/img]
- 图示截面对z轴的抗弯截面模量等于( )。[img=173x144]1803957ca1985d2.png[/img] A: [img=70x46]1803957ca98e24e.png[/img] B: [img=70x46]1803957cb213004.png[/img] C: [img=277x133]1803957cbbed508.png[/img] D: [img=103x46]1803957cc6da9d3.png[/img]
- 令F(x):x是有理数,G(x):x是实数。将命题“所有的有理数都是实数,但有的有实数不是有理数”符号化为() 未知类型:{'options': ['17e0a83a4157352.jpgx(F(x)∧G(x))∧[img=8x14]17e0a83a35505d4.jpg[/img]x(G(x)[img=14x9]17e0a73094b5dcf.jpg[/img][img=10x11]17e0a839b915354.jpg[/img]F(x))', ' [img=8x14]17e0a83a4157352.jpg[/img]x(F(x)[img=14x9]17e0a73094b5dcf.jpg[/img]G(x))∧[img=8x14]17e0a83a35505d4.jpg[/img]x(G(x)∧[img=10x11]17e0a839b915354.jpg[/img]F(x))', ' [img=8x14]17e0a83a4157352.jpg[/img]x(F(x)∧G(x))∧[img=8x14]17e0a83a35505d4.jpg[/img]x(G(x)∧[img=10x11]17e0a839b915354.jpg[/img]F(x))', ' [img=8x14]17e0a83a4157352.jpg[/img]x(F(x)[img=14x9]17e0a73094b5dcf.jpg[/img]G(x))∧[img=8x14]17e0a83a35505d4.jpg[/img]x(G(x)[img=14x9]17e0a73094b5dcf.jpg[/img][img=10x11]17e0a839b915354.jpg[/img]F(x))'], 'type': 102}
- 下列函数中为同一个函数的是() 未知类型:{'options': ['f(x)=x,g(x)=[img=25x39]17e43f7e294a229.png[/img]', ' f(x)=x,g(x)=[img=39x24]17e43f7e31cdea3.jpg[/img]', ' f(x)=x,g(x)=[img=35x25]17e43f7e3c419e9.png[/img]', ' f(x)=|x|,g(x)=[img=35x25]17e43f7e3c419e9.png[/img]'], 'type': 102}
- 可导函数f(x),对任意的x,y恒有f(x+y)=f(x)f(y),且f'(0)=1,则f(x)等于 A: [img=60x19]1802fb229b3bc18.png[/img] B: [img=55x46]1802fb22a3b7107.png[/img] C: [img=17x19]1802fb22abf3c5e.png[/img] D: [img=49x23]1802fb22b545827.png[/img]