• 2022-06-16
    设f(x,y)为连续函数,且f(x,y)=f(y,x),证明:
  • 因为作变换或又变换T将D变为uυ平面上区域故

    内容

    • 0

      设f(x)、f′(x)为已知的连续函数,则微分方程y′+f′(x)y=f(x)f′(x)的通解是:()

    • 1

      设二元函数为z=f(x,y),则f(x,y)可微分是f(x,y)连续的 条件

    • 2

      设函数f(x,y,z)为连续函数,S表示平面x + y + ...d23-33459ffc0042.png

    • 3

      设f(x)满足f(x+y)=f(x)+f(y),且f(x)在x=0连续,证明f(x)在任意点x处连续。

    • 4

      设随机变量X的密度函数为f (x),Y =-X,则Y的密度函数为 A: f (y) B: 1-f (-y) C: -f (y) D: f (-y)