• 2022-06-19
    如果\( k = \lim \limits_{x \to \infty } { { f\left( x \right)} \over x},b =\lim \limits_{x \to \infty } \left( {f\left( x \right) - kx} \right) \),则称\( y = kx +b\)为曲线\( y = f(x) \) 的一条______ 。
  • 斜渐进线

    内容

    • 0

      求极限\( \lim \limits_{x \to {0^{\rm{ + }}}} {\left( {\cot x} \right)^{\sin x}}{\rm{ = }}\)__________

    • 1

      函数\( f\left( x \right) = {x^2} - { { 54} \over x} \)在\( ( - \infty ,0) \)上的最小值为_______ . ______

    • 2

      函数\(z = {\left( {xy} \right)^x}\)的全微分为 A: \(dz = \left( { { {\left( {xy} \right)}^x} + \ln xy} \right)dx + x{\left( {xy} \right)^x}dy\) B: \(dz = \left( { { {\left( {xy} \right)}^x} + \ln xy} \right)dx + { { x { { \left( {xy} \right)}^x}} \over y}dy\) C: \(dz = {\left( {xy} \right)^x}\ln xydx + { { x { { \left( {xy} \right)}^x}} \over y}dy\) D: \(dz = {\left( {xy} \right)^x}\left( {1 + \ln xy} \right)dx + { { x { { \left( {xy} \right)}^x}} \over y}dy\)

    • 3

      若\({y_1}\left( x \right), {y_2}\left( x \right)\)都是\(y' + P\left( x \right)y = Q\left( x \right)\)的特解,且 \({y_1}\left( x \right), {y_2}\left( x \right)\) 线性无关,则通解可表为\(y\left( x \right) = {y_1}\left( x \right) + C\left[ { { y_1}\left( x \right) - {y_2}\left( x \right)} \right]\)。

    • 4

      已知\( y = \ln \left| x \right| \),则\( y' \)为( ). A: \( {1 \over {\left| x \right|}} \) B: \( {1 \over x} \) C: \( - {1 \over x} \) D: \( x \)