举一反三
- 下列极限计算正确的是( ). A: \(\lim \limits_{x \to 0} { { \left| x \right|} \over x} = 1\) B: \(\lim \limits_{x \to {0^ + }} { { \left| x \right|} \over x} = 1\) C: \(\lim \limits_{x \to 0} {(1 - {1 \over {2x}})^{2x}} = {e^{ - 1}}\) D: \(\lim \limits_{x \to \infty } {(1 - {1 \over {2x}})^{2x}} = e\)
- \( \lim \limits_{x \to {0^ + }} {\left( {\cot x} \right)^ { { 1 \over {\ln x}}}} \)=_____ ______
- \(\lim \limits_{x \to 1} { { \sin \left( { { x^2} - 1} \right)} \over {x - 1}}{\rm{ = }}\)______ 。
- 将\(f(x) = {1 \over {2 - x}}\)展开成\(x \)的幂级数为( )。 A: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n }}}}} \),\(( - 2,2)\) B: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n }}}}} \),\(\left( { - 2,2} \right]\) C: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n + 1}}}}} \),\(( - 2,2)\) D: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n + 1}}}}} \),\(\left( { - 2,2} \right]\)
- \( \mathop {\lim }\limits_{x \to 0} { { \left( { { e^x} - 1} \right)\sin 2x} \over {1 - \cos x}} = \)______ 。
内容
- 0
求极限\( \lim \limits_{x \to {0^{\rm{ + }}}} {\left( {\cot x} \right)^{\sin x}}{\rm{ = }}\)__________
- 1
函数\( f\left( x \right) = {x^2} - { { 54} \over x} \)在\( ( - \infty ,0) \)上的最小值为_______ . ______
- 2
函数\(z = {\left( {xy} \right)^x}\)的全微分为 A: \(dz = \left( { { {\left( {xy} \right)}^x} + \ln xy} \right)dx + x{\left( {xy} \right)^x}dy\) B: \(dz = \left( { { {\left( {xy} \right)}^x} + \ln xy} \right)dx + { { x { { \left( {xy} \right)}^x}} \over y}dy\) C: \(dz = {\left( {xy} \right)^x}\ln xydx + { { x { { \left( {xy} \right)}^x}} \over y}dy\) D: \(dz = {\left( {xy} \right)^x}\left( {1 + \ln xy} \right)dx + { { x { { \left( {xy} \right)}^x}} \over y}dy\)
- 3
若\({y_1}\left( x \right), {y_2}\left( x \right)\)都是\(y' + P\left( x \right)y = Q\left( x \right)\)的特解,且 \({y_1}\left( x \right), {y_2}\left( x \right)\) 线性无关,则通解可表为\(y\left( x \right) = {y_1}\left( x \right) + C\left[ { { y_1}\left( x \right) - {y_2}\left( x \right)} \right]\)。
- 4
已知\( y = \ln \left| x \right| \),则\( y' \)为( ). A: \( {1 \over {\left| x \right|}} \) B: \( {1 \over x} \) C: \( - {1 \over x} \) D: \( x \)