已知sinα和cosα是关于x的方程x^2-2xsinα+sin^2β=0的两个根,求证2cos2α=cos2β.
举一反三
- 【单选题】设y=sin(cos(x)),求 结果为:(本题10.0分) A. cos(cos(x))*cos(x)+ sin(cos(x))*sin(x)^2 B. - cos(cos(x))*cos(x) - sin(cos(x))*sin(x)^2 C. - cos(cos(x))*cos(x)^2 - sin(cos(x))*sin(x)^2 D. - cos(cos(x))*cos(x) ^2- sin(cos(x))*sin(x)
- 曲线积分$$\int_{(0,0}^{(x,y)}(2x\cos y-y^2\sin x)dx+(2y\cos x-x^2\sin y)dy=$$ A: $y^2\cos x+x^2\cos y$ B: $x^2\cos x+y^2\cos y$ C: $x^2\sin y+y^2\sin x$ D: $x^2\sin x+y^2\sin y$
- 3. $(2x\cos y-{{y}^{2}}\sin x)dx+(2y\cos x-{{x}^{2}}\sin y)dy$的原函数是 ( ) A: ${{x}^{2}}\sin y-{{y}^{2}}\sin x+C$ B: ${{x}^{2}}\sin y+{{y}^{2}}\sin x+C$ C: ${{x}^{2}}\cos y-{{y}^{2}}\cos x+C$ D: ${{x}^{2}}\cos y+{{y}^{2}}\cos x+C$
- 【单选题】化简 sin( x + y )sin( x - y ) + cos( x + y )cos( x - y ) 的结果是 A. sin 2 x B. cos 2 y C. - cos 2 x D. -cos 2 y
- $\int {{1 \over {3 + 5\cos x}}} dx = \left( {} \right)$ A: ${1 \over 4}\ln \left| {{{2\cos x + \sin x} \over {2\cos x - \sin x}}} \right| + C$ B: ${1 \over 4}\ln \left| {{{2\cos {x \over 2} + \sin {x \over 2}} \over {2\cos {x \over 2} - \sin {x \over 2}}}} \right| + C$ C: $\ln \left| {{{\cos {x \over 2} + \sin {x \over 2}} \over {\cos {x \over 2} - \sin {x \over 2}}}} \right| + C$ D: $\ln \left| {{{\cos x + \sin x} \over {\cos x - \sin x}}} \right| + C$