• 2022-06-19
    第2类拉格朗日方程表达式为____ 。
    A: $\frac{{\rm{d}}}{{{\rm{d}}t}}\left( {\frac{{\partial T}}{{\partial {{\dot q}_k}}}} \right) - \frac{{\partial T}}{{\partial {q_k}}} = 0$
    B: $\frac{{\rm{d}}}{{{\rm{d}}t}}\left( {\frac{{\partial T}}{{\partial {{\dot q}_k}}}} \right) - \frac{{\partial T}}{{\partial {q_k}}} = {Q_k}$
    C: $\frac{{\rm{d}}}{{{\rm{d}}t}}\left( {\frac{{\partial T}}{{\partial {{\dot q}_k}}}} \right) + \frac{{\partial T}}{{\partial {q_k}}} = {Q_k}$
    D: 以上都不对
  • B

    内容

    • 0

      Dead space like ventilation refer to () A: decrease<br/>of partial alveolar ventilation B: increase<br/>of partial alveolar VA/Q C: increase<br/>of partial alveolar ventilation D: decrease<br/>of partial alveolar VA/Q E: increase<br/>of anatomic shunt

    • 1

      9. 已知函数$z=z(x,y)$由${{z}^{3}}-3xyz={{a}^{3}}$确定,则$\frac{{{\partial }^{2}}z}{\partial x\partial y}=$( ) A: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ B: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-xy)}{{{({{z}^{2}}-xy)}^{2}}}$ C: $\frac{z({{z}^{3}}-2xyz-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ D: $\frac{z({{z}^{3}}-2xy{{z}^{2}}-{{x}^{2}}y)}{{{({{z}^{2}}-xy)}^{3}}}$

    • 2

      (2)在深度负反馈条件下,下图所示电路的电压放大倍数为_____。 A: $\left( 1+ \frac{R_4}{R_5}\right) \cdot \frac{{R_6}//{R_{\rm L}}}{R_1}$ B: $\left( 1+ \frac{R_4}{R_5} \right) \cdot \frac{R_6}{R_1}$ C: $\frac{{R_6}//{R_{\rm L}}}{R_1}$ D: $\frac{R_4}{R_5} \cdot \frac{{R_6}//{R_{\rm L}}}{R_1} $

    • 3

      (4)方向导数$\frac{\partial f(1,1)}{\partial \vec{v}}$的最大值和最小值分别为( ) A: $1\ -1$ B: $2,\ -2$ C: $\sqrt{2}$,$-\sqrt{2}$ D: $2\sqrt{2}$,$-2\sqrt{2}$

    • 4

      1.设${{J}_{k}}=\int_{{}}^{{}}{\frac{dx}{{{\left&#91; {{(x+a)}^{2}}+{{b}^{2}} \right&#93;}^{k}}}}\quad (b\ne 0)$,则${{J}_{k}}$满足( )。 A: ${{J}_{k+1}}=\frac{1}{2k{{b}^{2}}}\left[ (x+a){{\left( {{(x+a)}^{2}}+{{b}^{2}} \right)}^{-k}}-(2k-1){{J}_{k}} \right],\quad (k\ge 2)$ B: ${{J}_{k+1}}=\frac{1}{2k{{b}^{2}}}\left[ (x+a){{\left( {{(x+a)}^{2}}+{{b}^{2}} \right)}^{-k}}+(2k-1){{J}_{k}} \right],\quad (k\ge 2)$ C: ${{J}_{k+1}}=\frac{1}{2{{b}^{2}}}\left[ (x+a){{\left( {{(x+a)}^{2}}+{{b}^{2}} \right)}^{-k}}+(2k+1){{J}_{k}} \right],\quad (k\ge 2)$ D: ${{J}_{k+1}}=\frac{1}{2{{b}^{2}}}\left[ (x+a){{\left( {{(x+a)}^{2}}+{{b}^{2}} \right)}^{-k}}+(2k-1){{J}_{k}} \right],\quad (k\ge 2)$