几何空间可以看成是以原点[tex=0.786x1.0]YEkxBRWVe8SyiK/VG6WTCQ==[/tex]为起点的所有向量组成的集合[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]。它有加法和数量乘法两种运算,并且满足8条运算法则。几何空间v的一个非空子集[tex=0.714x1.0]UsTt0JMISB2vmq9eVGUHdA==[/tex]如果对于向量的加法和数量乘法都封闭,那么称[tex=0.714x1.0]UsTt0JMISB2vmq9eVGUHdA==[/tex]是[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]的一个字空间。一条直线[tex=0.357x1.0]5vVfAZliYwqMw8JaLE+iEA==[/tex]可以看成是以[tex=0.786x1.0]YEkxBRWVe8SyiK/VG6WTCQ==[/tex]为起点,以[tex=0.357x1.0]5vVfAZliYwqMw8JaLE+iEA==[/tex]上的点为终点的所有向量组成的集合。一个平面[tex=0.571x0.786]N02a8LR+X7uadF7bDYMkPA==[/tex]可以看成是以区为起点,以[tex=0.571x0.786]N02a8LR+X7uadF7bDYMkPA==[/tex]上的点为终点的所有向量组成的集合。设[tex=2.286x1.0]7cnl4aghQaKsHkL1bld5yadMTNoohrdhBwWHNfN0kck=[/tex]分别是经过原点[tex=0.786x1.0]YEkxBRWVe8SyiK/VG6WTCQ==[/tex]和不经过原点的一个平面,试问:[tex=2.286x1.0]7cnl4aghQaKsHkL1bld5yadMTNoohrdhBwWHNfN0kck=[/tex]是不是[tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex]的一个子空间.
举一反三
- 几何空间可以看成是以原点[tex=0.786x1.0]YEkxBRWVe8SyiK/VG6WTCQ==[/tex]为起点的所有向量组成的集合[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]。它有加法和数量乘法两种运算,并且满足8条运算法则。几何空间v的一个非空子集[tex=0.714x1.0]UsTt0JMISB2vmq9eVGUHdA==[/tex]如果对于向量的加法和数量乘法都封闭,那么称[tex=0.714x1.0]UsTt0JMISB2vmq9eVGUHdA==[/tex]是[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]的一个字空间。一条直线[tex=0.357x1.0]5vVfAZliYwqMw8JaLE+iEA==[/tex]可以看成是以[tex=0.786x1.0]YEkxBRWVe8SyiK/VG6WTCQ==[/tex]为起点,以[tex=0.357x1.0]5vVfAZliYwqMw8JaLE+iEA==[/tex]上的点为终点的所有向量组成的集合。一个平面[tex=0.571x0.786]N02a8LR+X7uadF7bDYMkPA==[/tex]可以看成是以区为起点,以[tex=0.571x0.786]N02a8LR+X7uadF7bDYMkPA==[/tex]上的点为终点的所有向量组成的集合。设[tex=0.714x1.214]9ZugyQ7Jnp637JYvSuP3XA==[/tex]是经过原点[tex=0.786x1.0]YEkxBRWVe8SyiK/VG6WTCQ==[/tex]的一条直线,[tex=0.714x1.214]rH9B3ustX9PRtavAcy8DvQ==[/tex]是不经过原点[tex=0.786x1.0]YEkxBRWVe8SyiK/VG6WTCQ==[/tex]的一条直线,试问:[tex=0.714x1.214]9ZugyQ7Jnp637JYvSuP3XA==[/tex],[tex=0.714x1.214]rH9B3ustX9PRtavAcy8DvQ==[/tex]是不是几何空间[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]的一个子空间.
- 由非空集合X的所有子集构成的集合称为X的幂集,记作[tex=1.143x1.214]6fgP1j+0v37iZFMJocAU+g==[/tex].(1)设X={a,b,c},求[tex=1.143x1.214]6fgP1j+0v37iZFMJocAU+g==[/tex].(2)设X是由n个元素组成的有限集,证明[tex=1.143x1.214]6fgP1j+0v37iZFMJocAU+g==[/tex]中含有[tex=1.0x1.0]j//x0/Z+ltpf5R8ThFOpMA==[/tex]个元素.
- 6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。
- 设 [tex=5.714x1.214]lZfcRDOHT43TyAqQoLZlW8UiH0GFLj08pVPZaN1Dbiw=[/tex]是线性空间 [tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex] 的 [tex=0.5x0.786]ICKY+F5VdoSQrRn/wUUOyw==[/tex] 个非平凡的子空间,证明 : [tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex] 中至少有一向量不属于[tex=5.357x1.214]lZfcRDOHT43TyAqQoLZlW6NOFio2Pds294Bv4ocg9JA=[/tex]中任何一个.
- 如图所示,电荷 [tex=1.286x1.143]HtShgpkNmCs66SDQIt6cYg==[/tex] 以速度 [tex=0.5x0.786]GWrvJtODhYOBa2bpkSPSFQ==[/tex] 向 [tex=0.786x1.0]YEkxBRWVe8SyiK/VG6WTCQ==[/tex] 点运动(电荷到 [tex=0.786x1.0]YEkxBRWVe8SyiK/VG6WTCQ==[/tex] 点的距离以 [tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex] 表示).以 [tex=0.786x1.0]YEkxBRWVe8SyiK/VG6WTCQ==[/tex] 点 [tex=0.786x1.0]YEkxBRWVe8SyiK/VG6WTCQ==[/tex] 圆心作一半径为 [tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex] 的圆,圆面与 [tex=0.5x0.786]GWrvJtODhYOBa2bpkSPSFQ==[/tex] 垂直.试计算通过此圆面的位移电流.[img=235x176]17a8b940d87326d.jpg[/img]