设 y=arctan(2x),则 y'(1)=
0.4;2/5;
举一反三
- 设y’=2x,且x=1时,y=2,则y=()。
- 隐函数求导y=2x*arctan(y/x)
- 如下程序的输出是什么? #include <stdio.h> void Swap (int x, int y);int main() { int x = 1; int y = 2; printf ("x=%d,y=%d\n", x, y); Swap (x, y); printf ("x=%d,y=%d", x, y); } void Swap (int x, int y) { int temp; temp = x; x = y; y = temp; printf ("x=%d,y=%d\n", x, y); }? x=1,y=2x=2,y=1x=2,y=1|x=1,y=2x=1,y=2x=2,y=1|x=1,y=2x=2,y=1x=1,y=2|x=1,y=2x=1,y=2x=1,y=2
- 如下程序的输出是什么? #include [stdio.h] void Swap (int x, int y); int main() { int x = 1; int y = 2; printf ("x=%d,y=%d\n", x, y); Swap (x, y); printf ("x=%d,y=%d", x, y); } void Swap (int x, int y) { int temp; temp = x; x = y; y = temp; printf ("x=%d,y=%d\n", x, y); } A: x=1,y=2x=2,y=1x=2,y=1 B: x=1,y=2x=1,y=2x=2,y=1 C: x=1,y=2x=2,y=1x=1,y=2 D: x=1,y=2x=1,y=2x=1,y=2
- 设随机变量X与Y的协方差cov(X,Y)=0.5,D(X)=1,D(Y)=2,则cov(2X,X-Y)=
内容
- 0
设\(z = u{e^v}\),\(u = {x^2} + {y^2}\),\(v = xy\),则\( { { \partial z} \over {\partial x}}=\) A: \({e^{xy}}({x^2}y + {y^3} + 2x)\) B: \({e^{xy}}({x}y^2 + {y^3} + 2x)\) C: \({e^{xy}}({x}y + {y^3} + 2x)\) D: \({e^{xy}}({x^2}y + {y^2} + 2x)\)
- 1
设 $y=\tan x^2$,则 $y'=$( ). A: $\sec x^2$ B: $\sec^2 x^2$ C: $2x\sec^2 x$ D: $2x\sec^2 x^2$
- 2
已知\( {y^{(4)}} = {x^2} + 2x \),则\( {y^{(5)}} = 2x + 2 \)( ).
- 3
已知\( y = {e^{2x + 1}} \),则\( y' \)为( ). A: \( 2{e^{2x + 1}} \) B: \( {e^{2x + 1}} \) C: \( {e^x} \) D: \( (2x + 1){e^{2x + 1}} \)
- 4
已知\( y = {x^2} + 2x \),则\( y' \)为( ). A: \( 2x + 2 \) B: \( 2x \) C: \( 0 \) D: \( x \)