中国大学MOOC: 设 f(x,y) 在平面闭区域 D 上可积, g(x,y) 在 D上不可积,则 f(x,y)g(x,y) 在 D 上
可能可积也可能不可积
举一反三
- 若函数$f(x,y)$在有界闭区域$D$上可积,则$f(x,y)$在$D$上有界。
- 若f(x)在[a,b]上可积,则g(x))在[a,b]上不可积,则f(x)+g(x)在[a,b]上一定不可积。()
- 以下哪项是前束范式 A: "x"y(F(x) ÙF(y) ®G(y,x)) B: "x (F(x) Ù$y(F(y) ®G(y,x))) C: "x (F(x) Ù F(y) ®$y G(y,x)) D: "x (F(x) Ù "y F(y) ® G(y,x))
- 【判断题】函数f(x,y)在有界闭区域D上连续,则函数f(x,y)在有界闭区域D上的二重积分存在
- 连续的二元函数f(x,y)在有界闭区域D上一定可积.
内容
- 0
中国大学MOOC: 设 f(x, y) 可微, g(x, y) 也可微, 复合函数 f(x, g(x, y)) 关于 x 的偏导数为
- 1
谓词公式("x)F(x) Þ ("x)G(x)的前束范式是( ) A: ("x)("y) (F(x) Þ G(y)) B: ($x)("y)(F(x) Þ G(y)) C: ("x)($y) (F(x) Þ G(y)) D: ($x)($y)(F(x) Þ G(y))
- 2
Ø"xF(x)® $yG(y)的前束范式是( ) A: "x$y(Ø F(x) ® G(y)) B: "x"y(Ø F(x) ® G(y)) C: $x"y(Ø F(x) ® G(y)) D: $x$y(Ø F(x) ® G(y))
- 3
"x F(x,y) → ¬ $y G(x,y)的前束范式 A: $x$y(F(x,m) ®Ø G(t,y)) B: $x∀y(F(x,m) ®Ø G(t,y)) C: ∀x$y(F(x,m) ®Ø G(t,y)) D: ∀x$y(F(x,m) ® ØG(t,y))
- 4
有命题如下:任意实数x,总存在实数y,使得y[x成立。设:<br]F(x):x是实数[br][/br]G(x, y):x [ y<br]对该命题正确符号化的是 A: "x"y(F(x) ÙF(y) ®G(y,x)) B: "x$y(F(x) ÙF(y) ®G(y,x)) C: "x (F(x) Ù$y(F(y) ®G(y,x))) D: "x$y (F(x) ® (F(y) ÙG(y,x)))