• 2022-06-26 问题

    设二维随机变量 (X , Y )服从二维正态分布,则随机变量X + Y与X – Y不相关的充要条件为( ) A: E (X ) = E (Y ) B: E (X 2) – [E (X )]2 = E (Y 2 ) – [E (Y )]2 C: E (X 2 ) = E (Y 2) D: E (X 2) + [E (X )]2 = E (Y 2 ) + [E (Y )]2

    设二维随机变量 (X , Y )服从二维正态分布,则随机变量X + Y与X – Y不相关的充要条件为( ) A: E (X ) = E (Y ) B: E (X 2) – [E (X )]2 = E (Y 2 ) – [E (Y )]2 C: E (X 2 ) = E (Y 2) D: E (X 2) + [E (X )]2 = E (Y 2 ) + [E (Y )]2

  • 2022-06-19 问题

    方程$(x^2+1)(y^2-1) + xy y' = 0$的通解为 A: $y^2 = C \frac{e^{-x^2}}{x^2}$ B: $y = C \frac{e^{-x^2}}{x^2}$ C: $y^2 = C \frac{e^{-x^2}}{x^2}+1$ D: $y=C \frac{e^{-x^2}}{x^2}+1$

    方程$(x^2+1)(y^2-1) + xy y' = 0$的通解为 A: $y^2 = C \frac{e^{-x^2}}{x^2}$ B: $y = C \frac{e^{-x^2}}{x^2}$ C: $y^2 = C \frac{e^{-x^2}}{x^2}+1$ D: $y=C \frac{e^{-x^2}}{x^2}+1$

  • 2022-06-26 问题

    设 (X, Y) 为二维随机变量,则随机变量ξ = X + Y 与η = X − Y 不相关的充分必要条件为() A: E(X<sup>2</sup>) −[E(X)]<sup>2</sup>= E(Y<sup>2</sup>) −[E(Y)]<sup>2</sup>; B: E(X<sup>2</sup>) = E(Y<sup>2</sup>); C: E(X) = E(Y); D: E(X<sup >2</sup>) + [E(X)]<sup >2</sup>= E(Y<sup >2</sup>) + [E(Y)]<sup >2</sup>.

    设 (X, Y) 为二维随机变量,则随机变量ξ = X + Y 与η = X − Y 不相关的充分必要条件为() A: E(X<sup>2</sup>) −[E(X)]<sup>2</sup>= E(Y<sup>2</sup>) −[E(Y)]<sup>2</sup>; B: E(X<sup>2</sup>) = E(Y<sup>2</sup>); C: E(X) = E(Y); D: E(X<sup >2</sup>) + [E(X)]<sup >2</sup>= E(Y<sup >2</sup>) + [E(Y)]<sup >2</sup>.

  • 2022-06-12 问题

    求方程$y\frac{{{d}^{2}}y}{d{{x}^{2}}}-(\frac{dy}{dx})^{2}=0$的通解: A: $y={{C}_{1}}{{e}^{-{{C}_{2}}x}}$ B: $y={{C}_{1}}{{e}^{-{{C}_{2}}{{x}^{2}}}}$ C: $y={{C}_{1}}x{{e}^{-{{C}_{2}}{{x}^{2}}}}$ D: $y={{C}_{1}}{{e}^{{{C}_{2}}x}}$

    求方程$y\frac{{{d}^{2}}y}{d{{x}^{2}}}-(\frac{dy}{dx})^{2}=0$的通解: A: $y={{C}_{1}}{{e}^{-{{C}_{2}}x}}$ B: $y={{C}_{1}}{{e}^{-{{C}_{2}}{{x}^{2}}}}$ C: $y={{C}_{1}}x{{e}^{-{{C}_{2}}{{x}^{2}}}}$ D: $y={{C}_{1}}{{e}^{{{C}_{2}}x}}$

  • 2022-06-19 问题

    方程${{x}^{2}}{{y}^{''}}-(x+2)(x{{y}^{'}}-y)={{x}^{4}}$的通解是( ) A: $y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{2}})$ B: $y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{4}})$ C: $y={{C}_{1}}x+{{C}_{2}}x{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{4}})$ D: $y={{C}_{1}}x+{{C}_{2}}x{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{2}})$

    方程${{x}^{2}}{{y}^{''}}-(x+2)(x{{y}^{'}}-y)={{x}^{4}}$的通解是( ) A: $y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{2}})$ B: $y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{4}})$ C: $y={{C}_{1}}x+{{C}_{2}}x{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{4}})$ D: $y={{C}_{1}}x+{{C}_{2}}x{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{2}})$

  • 2022-05-29 问题

    下列语句语法正确的是( ) A: if x<2*y and x>y then y=x**2 B: if x<2*y : x>y then y=x^2 C: if x<2*y and x>y then y=x2 D: if x<2*y and x>y then y=x^2

    下列语句语法正确的是( ) A: if x<2*y and x>y then y=x**2 B: if x<2*y : x>y then y=x^2 C: if x<2*y and x>y then y=x2 D: if x<2*y and x>y then y=x^2

  • 2022-06-05 问题

    设\(z = u{e^v}\),\(u = {x^2} + {y^2}\),\(v = xy\),则\( { { \partial z} \over {\partial x}}=\) A: \({e^{xy}}({x^2}y + {y^3} + 2x)\) B: \({e^{xy}}({x}y^2 + {y^3} + 2x)\) C: \({e^{xy}}({x}y + {y^3} + 2x)\) D: \({e^{xy}}({x^2}y + {y^2} + 2x)\)

    设\(z = u{e^v}\),\(u = {x^2} + {y^2}\),\(v = xy\),则\( { { \partial z} \over {\partial x}}=\) A: \({e^{xy}}({x^2}y + {y^3} + 2x)\) B: \({e^{xy}}({x}y^2 + {y^3} + 2x)\) C: \({e^{xy}}({x}y + {y^3} + 2x)\) D: \({e^{xy}}({x^2}y + {y^2} + 2x)\)

  • 2021-04-14 问题

    【单选题】对任意实数x 1 , y 1 , x 2 , y 2 , x 1 < x 2 , y 1 < y 2 , 分布函数P{x 1 <X≤x 2 , y 1 <Y≤y 2 }=? A. F(x 2 , y 2 )+ F(x 1 , y 1 )+ F(x 1 , y 2 )+ F(x 2 , y 1 ) B. F(x 2 , y 2 )- F(x 1 , y 1 )+ F(x 1 , y 2 )- F(x 2 , y 1 ) C. F(x 2 , y 2 )+ F(x 1 , y 1 )- F(x 1 , y 2 )- F(x 2 , y 1 ) D. F(x 2 , y 2 )- F(x 1 , y 1 )- F(x 1 , y 2 )+ F(x 2 , y 1 )

    【单选题】对任意实数x 1 , y 1 , x 2 , y 2 , x 1 < x 2 , y 1 < y 2 , 分布函数P{x 1 <X≤x 2 , y 1 <Y≤y 2 }=? A. F(x 2 , y 2 )+ F(x 1 , y 1 )+ F(x 1 , y 2 )+ F(x 2 , y 1 ) B. F(x 2 , y 2 )- F(x 1 , y 1 )+ F(x 1 , y 2 )- F(x 2 , y 1 ) C. F(x 2 , y 2 )+ F(x 1 , y 1 )- F(x 1 , y 2 )- F(x 2 , y 1 ) D. F(x 2 , y 2 )- F(x 1 , y 1 )- F(x 1 , y 2 )+ F(x 2 , y 1 )

  • 2022-06-03 问题

    已知\( y = {x^2}{e^{ - x}} \),则\( y'' \)为( ). A: \( 2{e^{ - x}} - 4x{e^{ - x}} - {x^2}{e^{ - x}} \) B: \( 2{e^{ - x}} - 4x{e^{ - x}} + {x^2}{e^{ - x}} \) C: 0 D: \( 2{e^{ - x}} - 4x{e^{ - x}} \)

    已知\( y = {x^2}{e^{ - x}} \),则\( y'' \)为( ). A: \( 2{e^{ - x}} - 4x{e^{ - x}} - {x^2}{e^{ - x}} \) B: \( 2{e^{ - x}} - 4x{e^{ - x}} + {x^2}{e^{ - x}} \) C: 0 D: \( 2{e^{ - x}} - 4x{e^{ - x}} \)

  • 2022-06-03 问题

    4.已知二元函数$z(x,y)$满足方程$\frac{{{\partial }^{2}}z}{\partial x\partial y}=x+y$,并且$z(x,0)=x,z(0,y)={{y}^{2}}$,则$z(x,y)=$( ) A: $\frac{1}{2}({{x}^{2}}y-x{{y}^{2}})+{{y}^{2}}+x$ B: $\frac{1}{2}({{x}^{2}}{{y}^{2}}+xy)+{{y}^{2}}+x$ C: ${{x}^{2}}{{y}^{2}}+{{y}^{2}}+x$ D: $\frac{1}{2}({{x}^{2}}y+x{{y}^{2}})+{{y}^{2}}+x$

    4.已知二元函数$z(x,y)$满足方程$\frac{{{\partial }^{2}}z}{\partial x\partial y}=x+y$,并且$z(x,0)=x,z(0,y)={{y}^{2}}$,则$z(x,y)=$( ) A: $\frac{1}{2}({{x}^{2}}y-x{{y}^{2}})+{{y}^{2}}+x$ B: $\frac{1}{2}({{x}^{2}}{{y}^{2}}+xy)+{{y}^{2}}+x$ C: ${{x}^{2}}{{y}^{2}}+{{y}^{2}}+x$ D: $\frac{1}{2}({{x}^{2}}y+x{{y}^{2}})+{{y}^{2}}+x$

  • 1 2 3 4 5 6 7 8 9 10