$(-x-1)(x^{4}+2x^{3}-x^{2}-4x-2)+(x+2)(x^{4}+x^{3}-x^{2}-2x-2)$的结果是( )。 A: $x^{2}-2$; B: $x^{3}-x^{2}-1$; C: $2x^{3}-4x-2$; D: $x^{4}+3x-2.$
$(-x-1)(x^{4}+2x^{3}-x^{2}-4x-2)+(x+2)(x^{4}+x^{3}-x^{2}-2x-2)$的结果是( )。 A: $x^{2}-2$; B: $x^{3}-x^{2}-1$; C: $2x^{3}-4x-2$; D: $x^{4}+3x-2.$
以4,9,1为为插值节点,求\(\sqrt x \)的lagrange的插值多项式 A: \( {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) B: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) C: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x +1) + {1 \over {24}}(x - 4)(x - 9)\) D: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) - {1 \over {24}}(x - 4)(x - 9)\)
以4,9,1为为插值节点,求\(\sqrt x \)的lagrange的插值多项式 A: \( {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) B: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) C: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x +1) + {1 \over {24}}(x - 4)(x - 9)\) D: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) - {1 \over {24}}(x - 4)(x - 9)\)
方程${{x}^{2}}{{y}^{''}}-(x+2)(x{{y}^{'}}-y)={{x}^{4}}$的通解是( ) A: $y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{2}})$ B: $y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{4}})$ C: $y={{C}_{1}}x+{{C}_{2}}x{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{4}})$ D: $y={{C}_{1}}x+{{C}_{2}}x{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{2}})$
方程${{x}^{2}}{{y}^{''}}-(x+2)(x{{y}^{'}}-y)={{x}^{4}}$的通解是( ) A: $y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{2}})$ B: $y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{4}})$ C: $y={{C}_{1}}x+{{C}_{2}}x{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{4}})$ D: $y={{C}_{1}}x+{{C}_{2}}x{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{2}})$
求不定积分[img=112x35]17da6538063a9e4.png[/img]; ( ) A: (x^4*log(x)^2)/4 + (x^4*(log(x) - 1/4))/ B: (x^4*log(x)^2)/4 - (x^4*(log(x) - 1/4))/8 C: (x^4*log(x)^2)/4 - (x^4*(log(x) - 1/4)) D: (x^4*log(x)^2)/4 + (x^4*(log(x) - 1/4))/8
求不定积分[img=112x35]17da6538063a9e4.png[/img]; ( ) A: (x^4*log(x)^2)/4 + (x^4*(log(x) - 1/4))/ B: (x^4*log(x)^2)/4 - (x^4*(log(x) - 1/4))/8 C: (x^4*log(x)^2)/4 - (x^4*(log(x) - 1/4)) D: (x^4*log(x)^2)/4 + (x^4*(log(x) - 1/4))/8
采用基2时间抽取FFT算法流图计算8点序列的DFT,第一级的数据顺序为 A: x[0],x[2],x[4],x[6],x[1],x[3],x[5],x[7] B: x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7] C: x[0],x[4],x[2],x[6],x[1],x[5],x[3],x[7] D: x[0],x[2],x[1],x[3],x[4],x[6],x[5],x[7]
采用基2时间抽取FFT算法流图计算8点序列的DFT,第一级的数据顺序为 A: x[0],x[2],x[4],x[6],x[1],x[3],x[5],x[7] B: x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7] C: x[0],x[4],x[2],x[6],x[1],x[5],x[3],x[7] D: x[0],x[2],x[1],x[3],x[4],x[6],x[5],x[7]
采用基2频率抽取FFT算法计算点序列的DFT,以下()流图是对的。 A: x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7] B: x[0],x[2],x[4],x[6],x[1],x[3],x[5],x[7] C: x[0],x[2],x[1],x[3],x[4],x[6],x[5],x[7] D: x[0],x[4],x[2],x[6],x[1],x[5],x[3],x[7]
采用基2频率抽取FFT算法计算点序列的DFT,以下()流图是对的。 A: x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7] B: x[0],x[2],x[4],x[6],x[1],x[3],x[5],x[7] C: x[0],x[2],x[1],x[3],x[4],x[6],x[5],x[7] D: x[0],x[4],x[2],x[6],x[1],x[5],x[3],x[7]
函数\(y = {x^{ - 4}}{\rm{ + }}2{x^3} - 2x\)的导数为( ). A: \(4{x^3} + 6{x^2} - 2\) B: \( - 4{x^{ - 5}} + 6{x^2} - 2\) C: \( - 4{x^{ - 3}} + 6{x^2} - 2\) D: \( - 4{x^3} + 6{x^2} - 2\)
函数\(y = {x^{ - 4}}{\rm{ + }}2{x^3} - 2x\)的导数为( ). A: \(4{x^3} + 6{x^2} - 2\) B: \( - 4{x^{ - 5}} + 6{x^2} - 2\) C: \( - 4{x^{ - 3}} + 6{x^2} - 2\) D: \( - 4{x^3} + 6{x^2} - 2\)
设矩阵,已知A的特征值是λ1=2,λ2=λ3=1,则()。 A: x=-4,y=3 B: x=-4,y=-3 C: x=4,y=-3 D: x=4,y=3
设矩阵,已知A的特征值是λ1=2,λ2=λ3=1,则()。 A: x=-4,y=3 B: x=-4,y=-3 C: x=4,y=-3 D: x=4,y=3
已知int x=3,y=4;,写出下列表达式的值 (1) (x,y) (2) x>y?x:y (3) x?y:x (4) (x>y)?(y>=2)?1:2:(y>x)?x:y
已知int x=3,y=4;,写出下列表达式的值 (1) (x,y) (2) x>y?x:y (3) x?y:x (4) (x>y)?(y>=2)?1:2:(y>x)?x:y
阅读下面程序,则disp语句所显示结果为()。x=1;while x~=5disp(x)x=x+1;end A: 1 3 2 4 B: 1 2 3 4 C: 2 3 4 5 D: 1 3 4 2
阅读下面程序,则disp语句所显示结果为()。x=1;while x~=5disp(x)x=x+1;end A: 1 3 2 4 B: 1 2 3 4 C: 2 3 4 5 D: 1 3 4 2