函数\(y = 2{x^{ - 3}}{\rm{ - }}3{x^2}\)的导数为( ). A: \( - 6{x^{ - 4}} - 6x\) B: \( - 6{x^{ - 4}} + 6x\) C: \( - 6{x^{ - 3}} - 6{x^3}\) D: \( - 6{x^{ - 3}} + 6{x^3}\)
函数\(y = 2{x^{ - 3}}{\rm{ - }}3{x^2}\)的导数为( ). A: \( - 6{x^{ - 4}} - 6x\) B: \( - 6{x^{ - 4}} + 6x\) C: \( - 6{x^{ - 3}} - 6{x^3}\) D: \( - 6{x^{ - 3}} + 6{x^3}\)
函数\(y = {x^{ - 4}}{\rm{ + }}2{x^3} - 2x\)的导数为( ). A: \(4{x^3} + 6{x^2} - 2\) B: \( - 4{x^{ - 5}} + 6{x^2} - 2\) C: \( - 4{x^{ - 3}} + 6{x^2} - 2\) D: \( - 4{x^3} + 6{x^2} - 2\)
函数\(y = {x^{ - 4}}{\rm{ + }}2{x^3} - 2x\)的导数为( ). A: \(4{x^3} + 6{x^2} - 2\) B: \( - 4{x^{ - 5}} + 6{x^2} - 2\) C: \( - 4{x^{ - 3}} + 6{x^2} - 2\) D: \( - 4{x^3} + 6{x^2} - 2\)
已知线性卷积x(n)*h(n)={-15, 4, -3, 13, -4, 3, 2}。x(n)和h(n)的6点圆周卷积和x(n)⑥h(n)为( )。 A: {-13, 4, -3, 13, -4, 3} B: {-15, 4, -3, 13, -4, 3, 2} C: {-15, 4, -3, 13, -4, 3} D: {-15, 4, -3, 13, -4, 3, 2}
已知线性卷积x(n)*h(n)={-15, 4, -3, 13, -4, 3, 2}。x(n)和h(n)的6点圆周卷积和x(n)⑥h(n)为( )。 A: {-13, 4, -3, 13, -4, 3} B: {-15, 4, -3, 13, -4, 3, 2} C: {-15, 4, -3, 13, -4, 3} D: {-15, 4, -3, 13, -4, 3, 2}
应用Matlab软件计算行列式[img=110x88]17da5d7b00219d6.png[/img]为( ). A: x^2 - 6*x^2*y^2 + 8*x*y^3 - 3*y^4 B: x^3 - 6*x^2*y^2 + 8*x*y^3 - 3*y^4 C: x^4 - 6*x^2*y^2 + 8*x*y^3 - 3*y^4 D: x^5- 6*x^2*y^2 + 8*x*y^3 - 3*y^4
应用Matlab软件计算行列式[img=110x88]17da5d7b00219d6.png[/img]为( ). A: x^2 - 6*x^2*y^2 + 8*x*y^3 - 3*y^4 B: x^3 - 6*x^2*y^2 + 8*x*y^3 - 3*y^4 C: x^4 - 6*x^2*y^2 + 8*x*y^3 - 3*y^4 D: x^5- 6*x^2*y^2 + 8*x*y^3 - 3*y^4
k1=1;k2=2;k3=3;x=15;if(!k1) x--;else if(k2) x=4;else x=3; A: 14 B: 4 C: 15 D: 3
k1=1;k2=2;k3=3;x=15;if(!k1) x--;else if(k2) x=4;else x=3; A: 14 B: 4 C: 15 D: 3
If2<em>x</em>+3=9,whatis4<em>x</em>+6? A: 3 B: 4 C: 6 D: 9 E: 18
If2<em>x</em>+3=9,whatis4<em>x</em>+6? A: 3 B: 4 C: 6 D: 9 E: 18
设X为随机变量,已知E(X)=3,那么E(3X)=( ) A: 3 B: 6 C: 4 D: 9
设X为随机变量,已知E(X)=3,那么E(3X)=( ) A: 3 B: 6 C: 4 D: 9
乳牙开始萌出的月龄是 A: 3~4 B: 4~6 C: 4~10 D: 12~15 E: 15~18
乳牙开始萌出的月龄是 A: 3~4 B: 4~6 C: 4~10 D: 12~15 E: 15~18
X 1 2 3 4 5 6 Y 5 6 9 10 15 25 上面数据计之相关系数为何?
X 1 2 3 4 5 6 Y 5 6 9 10 15 25 上面数据计之相关系数为何?
函数$f(x) =x^{1/2}-x^{2/3}$的单调递减区间为 A: $[0,\frac{3^6}{4^6}]$ B: $[\frac{3^6}{4^6},\infty]$ C: $\mathbb{R}$ D: $\mathbb{R}^+$
函数$f(x) =x^{1/2}-x^{2/3}$的单调递减区间为 A: $[0,\frac{3^6}{4^6}]$ B: $[\frac{3^6}{4^6},\infty]$ C: $\mathbb{R}$ D: $\mathbb{R}^+$