已知函数f(x)=,则f(0)+f(-1)=[ ]A、9
已知函数f(x)=,则f(0)+f(-1)=[ ]A、9
设f(x)为连续函数,则等于() A: f(2)-f(0) B: 1/2[f(11)-f(0)] C: 1/2[f(2)-f(0)] D: f(1)-f(0)
设f(x)为连续函数,则等于() A: f(2)-f(0) B: 1/2[f(11)-f(0)] C: 1/2[f(2)-f(0)] D: f(1)-f(0)
下图所示机构自由度计算,( )是正确的。 A: mg src="http://p.ananas.chaoxing.com/star3/origin/cb07ca0fb12be985c301490389c1e187.jpg" B: F=3×7 –(2×9 + 2 – 2)– 2 = 1 C: F=3×7 –(2×9+ 2– 0)– 0 = 1 D: F=3×7 –(2×8+ 2 – 0)– 2 = 1 E: F=3×5 –(2×6+ 2– 0)– 0 = 1
下图所示机构自由度计算,( )是正确的。 A: mg src="http://p.ananas.chaoxing.com/star3/origin/cb07ca0fb12be985c301490389c1e187.jpg" B: F=3×7 –(2×9 + 2 – 2)– 2 = 1 C: F=3×7 –(2×9+ 2– 0)– 0 = 1 D: F=3×7 –(2×8+ 2 – 0)– 2 = 1 E: F=3×5 –(2×6+ 2– 0)– 0 = 1
设函数f(x)在区间[-2,2]上可导,且f′(x)>f(x)>0,则()。 A: f(-2)/f(-1)>1 B: f(0)/f(-1)>e C: f(1)/f(-1)<e<sup>2</sup> D: f(2)/f(-1)<e<sup>2</sup>
设函数f(x)在区间[-2,2]上可导,且f′(x)>f(x)>0,则()。 A: f(-2)/f(-1)>1 B: f(0)/f(-1)>e C: f(1)/f(-1)<e<sup>2</sup> D: f(2)/f(-1)<e<sup>2</sup>
设f(x)=∣x-3∣,则f[f(1)]= A: 3 B: 2 C: 1 D: 0
设f(x)=∣x-3∣,则f[f(1)]= A: 3 B: 2 C: 1 D: 0
设f(x+2)=x^2-2x+3,则f[f(2)]=() A: 3 B: 0 C: 1 D: 2
设f(x+2)=x^2-2x+3,则f[f(2)]=() A: 3 B: 0 C: 1 D: 2
已知函数f(x)=ax+a-x(a>0且a≠1),且f(1)=3,则f(0)+f(2)的值是( ) A: 7 B: 8 C: 9 D: 10
已知函数f(x)=ax+a-x(a>0且a≠1),且f(1)=3,则f(0)+f(2)的值是( ) A: 7 B: 8 C: 9 D: 10
以 下 不 等 式 中 ,不 正 确 的 是( )。 A: 1 2 3 4 5 6 <(1 2 3 4 5 6)H B: (1 1 0 1 0 1 0 1 0 1 0 1 0)B>(F F F)H C: (9)H> 9 D: 1 1 1 1 >(1 1 1 1)B
以 下 不 等 式 中 ,不 正 确 的 是( )。 A: 1 2 3 4 5 6 <(1 2 3 4 5 6)H B: (1 1 0 1 0 1 0 1 0 1 0 1 0)B>(F F F)H C: (9)H> 9 D: 1 1 1 1 >(1 1 1 1)B
设$\int_0^\pi {[f(x) + f''(x)]\sin xdx = 5} $,$f(\pi ) = 2$,求$f(0)$=( ) A: 1 B: 2 C: 3 D: 4
设$\int_0^\pi {[f(x) + f''(x)]\sin xdx = 5} $,$f(\pi ) = 2$,求$f(0)$=( ) A: 1 B: 2 C: 3 D: 4
设f(x)=[img=50x19]17e0bb9e8343c64.jpg[/img]则f[f(1)]=__________. A: 0 B: 1 C: 2 D: 3
设f(x)=[img=50x19]17e0bb9e8343c64.jpg[/img]则f[f(1)]=__________. A: 0 B: 1 C: 2 D: 3
