网课答案 | 资源分享
  • 首页
  • 最新收录
  • 微信公众号对接
  • 微信小程序对接
  • 联系站长
登录/注册
网课答案LOGO
关注微信公众号《课帮忙》查题
关注微信公众号《课帮忙》查题
关注微信公众号《课帮忙》查题
关注微信公众号《课帮忙》查题
关注微信公众号《课帮忙》查题
关注微信公众号《课帮忙》查题
  • 公告:维护QQ群:833371870,欢迎加入!
  • 公告:维护QQ群:833371870,欢迎加入!
  • 公告:维护QQ群:833371870,欢迎加入!
  • 2022-05-29
    设\( \Omega \) 是由\( 1 \le x \le 2 \) ,\( 0 \le y \le 1 \) ,\( 0 \le z \le 2 \) 所围区域,则\( \mathop{\int\!\!\!\int\!\!\!\int}\limits_{\kern-5.5pt \Omega } { { x^2}yz} dv \) =\( {7 \over 3} \)
  • 查看

    公众号

    广告招租

    举一反三

    • 设\(D\)是由\( 0 \le x \le 1 \) ,\( 0 \le y \le 1 \) 所围区域,则\( \int\!\!\!\int\limits_D {x{y^2}} dxdy \) = \( {1 \over 6} \) 。
    • 设D是由\( 0 \le x \le 1 \) ,\( 0 \le y \le 1 \) 所围区域,则\( \int\!\!\!\int\limits_D {\left| { { x^2} + {y^2} - 1} \right|} d\sigma \) = \( {\pi \over 4} - {1 \over 2} \) 。
    • 设\(D\)是由\( - 1 \le x \le 1 \) ,\( 0 \le y \le 2 \) 所围区域,则\( \int\!\!\!\int\limits_D {\left| {y - {x^2}} \right|} d\sigma \) = \( { { 45} \over {16}} \) 。
    • 设\(D\)为\( 1 \le x \le 2 \) 和\( 0 \le y \le 1 \) 所围区域,则\( \int\!\!\!\int\limits_D { { x^2}{e^{2y}}} d\sigma \) =\( {6 \over 7}\left( { { e^2} - 1} \right) \) 。
    • 计算\(\int\!\!\!\int\limits_\sum { { x^2}dydz + {y^2}dzdx + {z^2}} dxdy\),其中\(\sum\)为长方体\(\Omega \)的整个表面外侧,\(\Omega = \{ (x,y,z)|0 \le x \le a,0 \le y \le b,0 \le z \le c\} \)。 A: \((a + b + c)abc\) B: \((a -b + c)abc\) C: \((a + b -c)abc\) D: \((a - b - c)abc\)

    热门题目

    • 以下关于管理者的权力描述,不正确的是(
    • 出库物品经凭证审核、出库验收后,要向提货人员点交。同时应将出库物品及随行证件逐笔向提货人员当面点交。
    • 革兰染色中,革兰阴性菌染成
    • CIS 是企业文化的重要组成部分。
    • 在早期的殖民机制中,侨居当地的华人就成为殖民地当局不可替代的左膀右臂,成为殖民者和当地原住民之间的中间商。( )
    • 防水工程保证期与我国目前实行的保修期是两个完全相同的概念。
    • 不是鉴定蛋白质变性的方法有:_______
    • 青书学堂: (单选题) 张某经过努力创作出一篇学术论文,依我国著作权法的规定( )(本题2.0分)
    • 图层蒙版除了用于控制图层的显示和隐藏,还可以用来( )。
    • 组织等节奏流水施工时,施工班组数一定等于施工过程数

    相关标签

      over yz mathop kern pt omega int 区域 dv limits_ le kern-5.5pt 5.5 limits

    查题对接

    • 微信查题

    站点信息

    • 统计数据:百度统计
    • 交换友链:QQ联系
    • 微信公众号:扫描二维码,关注我们
    友情链接:
    • 网课答案
    • 换友链点击联系

    Copyright © 2018-2023 网课答案 All Rights Reserved.  冀ICP备19017793号版权与免责声明