• 2022-05-30
    微分方程y''-5y'+6y = 0的一个特解是
    A: e2x;
    B: e 3x -c e2x;
    C: c1e3 x –c2 e2x;
    D: c1 e3 x –c2 e2x。
  • A

    内容

    • 0

      方程y'(x) = x^2 - 3x + 2 的平衡点是 A: x = 1, x = 2 B: x = 3, x = 2 C: x = 3, x = 1 D: x = 3, x = 0

    • 1

      方程\(\left( {1 - {x^2}} \right)y - xy' = 0\)的通解是( )。 A: \(y = C\sqrt {1 - {x^2}} \) B: \(y = - {1 \over 2}{x^3} + Cx\) C: \(y = {C \over {\sqrt {1 - {x^2}} }}\) D: \(y = Cx{e^{ - {1 \over 2}{x^2}}}\)

    • 2

      下列函数为偶函数的是( )。 A: \( y = e^{2x} - {e}^{ - 2x} + \cos x \) B: \( y = {\log _2} { { 1 + x} \over {1 -x}} \) C: \( y = 3{x^4} - {x^3} \) D: \( y = { { {e^x} + {e^{ - x}}} \over 2} \)

    • 3

      设X与Y是随机变量,若E(X)=1,E(Y)=2,cov(X,Y)=1,则E(XY)=()。 A: 0 B: 1 C: 2 D: 3

    • 4

      设\(z = u{e^v}\),\(u = {x^2} + {y^2}\),\(v = xy\),则\( { { \partial z} \over {\partial y}}=\)( )。 A: \({e^{xy}}({x}y^2 + {x^3} + 2y)\) B: \({e^{xy}}({x^2}y + {x^3} + 2y)\) C: \({e^{xy}}({x}y^2 + {x^3} + 2x)\) D: \({e^{xy}}({x}y+ {x^3} + 2y)\)