设函数f(x)在x=0处可导且limx→0{[f(x)+1]/[x+sinx]}=2则f(x)导数在x=0的值是?
举一反三
- 设函数f(x)在(-∞,+∞)内满足f(x)=f(x-π)+sinx且f(x)=x(x∈[0,π])则
- 设f(x)在[0,π]上二阶连续可导,且f(π)=2满足∫π0(f(x)+f″(x))sinxdx=5,试计算f(0)的值.
- 函数y=f(x)在x=x。处取得极大值,则必有[]. A: f(x。)=0 B: f〞(x。)<0 C: fˊ(x。)=0且f〞(x。)<0 D: fˊ(x。)=0或fˊ(x。)不存在
- 设函数f(x)在x=0处可导,且f(0)=0,f′(0)=2,则=()。设函数f(x)在x=0处可导,且f(0)=0,f′(0)=2,则=()。
- 设函数f(x)有二姐连续导数,且(x->0)lim[f(x)-a]/[e^x^2-1]=0,(x->0)lim[f‘’(x)+1]/[1-cosx]=2,则
