对于函数φ(z)=1/f(z),定义域为C,当|z|趋向于什么的时候limφ(z)=0
举一反三
- 若函数f(z)在z_0不连续,则: (lim)┬(z→z_0 ) [f(z)-f(z_0)]=0|(lim)┬(z→z_0 ) [f(z)-f(z_0)]≠0|(lim)┬(z→z_0 ) f(z)=f(z_0)|(lim)┬(Δz→0) f(z_0+Δz)=f(z_0)
- 对于函数φ(z)=1/ f(z)
- 调用下面函数,错误的是( )。def f(x, y = 0, z = 0): pass #空语句,定义空函数体 A: f(z = 3, x = 1, y = 2) B: f(1, x = 1, z = 3) C: f(1, y = 2, z = 3) D: f(1, z = 3)
- 执行下面代码,错误的是def f(x, y = 0, z = 0): pass # 空语句,定义空函数体 A: f(1, x = 1, z = 3) B: f(z = 3, x = 1, y = 2) C: f(1, z = 3) D: f(1, y = 2, z = 3)
- z=0为f(z)=z^2 (e^(z^2 )-1)的 级零点,