• 2022-06-03
    曲线[img=61x21]17e0a6a13c122b0.png[/img]在点[img=41x24]17e0a71dcc2d67d.png[/img]的微分的几何意义是( )
    未知类型:{'options': ['曲线[img=61x21]17e0a6a13c122b0.png[/img]在点[img=41x24]17e0a71dcc2d67d.png[/img]处的斜率', ' 曲线[img=61x21]17e0a6a13c122b0.png[/img]在点[img=41x24]17e0a71dcc2d67d.png[/img]处的切线的纵坐标对应于[img=23x19]17e0ab0b453c8a9.png[/img]的增量', ' 曲线[img=61x21]17e0a6a13c122b0.png[/img]在点[img=41x24]17e0a71dcc2d67d.png[/img]处的切线的纵坐标', ' 曲线[img=61x21]17e0a6a13c122b0.png[/img]在点[img=41x24]17e0a71dcc2d67d.png[/img]处的切线的横坐标'], 'type': 102}
  • 举一反三