用反间机理解释下列反应结果。[img=368x73]17f4ec5ba5811a5.png[/img][img=643x282]17f4ec661c06099.png[/img]
举一反三
- 设f(x)为连续函数,且 [img=217x49]18034a50d8b1b92.png[/img] 则[img=70x25]18034a50e196c62.png[/img] A: 5 B: 4 C: 0 D: -5
- 函数[img=196x27]17de92706aff834.png[/img],已知f(x)在x=-3处取得极值,则 a等于( ) A: 2 B: 3 C: 4 D: 5
- 求不定积分[img=132x48]17da6537fc8dad6.png[/img]; ( ) A: -(4*(cos(x/2)/2 + 2*sin(x/2)))/(17*exp(2*x)) B: (4*(sin(x/2)/2 + 2*sin(x/2)))/(17*exp(2*x)) C: (4*(cos(x/2)/2 + 2*sin(x/2)))/(17*exp(2*x)) D: (4*(cos(x/2)/2 + 2*cos(x/2)))/(17*exp(2*x))
- 求不定积分[img=115x46]17da65382f8e1b9.png[/img]; ( ) A: x - (5*log(x + 1))/4 - (3*log(x - 3)) B: (5*log(x + 1))/4 - (3*log(x - 3)) C: x - (5*log(x + 1))/4 - (3*log(x - 3))/4 D: (5*log(x + 1))/4 - (3*log(x - 3))/4
- 求以下定积分可以使用的命令有()。[img=199x87]1802f8c8a02c037.jpg[/img] A: x=pi/4:0.0001:5/4*pi; y=1+sin(x).*sin(x); trapz(x,y) B: f=@(x) 1+sin(x).*sin(x); q=integral(f,pi/4,5/4*pi) C: f=@(x) 1+sin(x).*sin(x); q=integral(@f,pi/4,5/4*pi) D: syms x f=1+sin(x)*sin(x); s=int(f,pi/4,5/4*pi); eval(s)