表面积为\({a^2}\)且体积为最大的长方体的体积为( )。
A: \({a \over {\sqrt 6 }}\)
B: \( { { {a^3}} \over {36}}\)
C: \( { { \sqrt 6 {a^3}} \over {36}}\)
D: \( { { {a^2}} \over 6}\)
A: \({a \over {\sqrt 6 }}\)
B: \( { { {a^3}} \over {36}}\)
C: \( { { \sqrt 6 {a^3}} \over {36}}\)
D: \( { { {a^2}} \over 6}\)
举一反三
- 表面积为${{a}^{2}}$的长方体中,体积的最大值为 A: ${{a}^{3}}$ B: $\frac{\sqrt{6}}{30}{{a}^{3}}$ C: $\frac{\sqrt{6}}{36}{{a}^{3}}$ D: $\frac{\sqrt{6}}{6}{{a}^{3}}$
- 求函数$y = {{1 + \root 3 \of {{x^2}} - \sqrt {2x} } \over {\sqrt x }}$的导数$y' = $( ) A: $ {1 \over 2}{x^{ - {3 \over 2}}} + {1 \over 6}{x^{ - {5 \over 6}}}$ B: $ - {1 \over 2}{x^{ - {3 \over 2}}} + {1 \over 6}{x^{ - {5 \over 6}}}$ C: ${1 \over 2}{x^{ - {3 \over 2}}} - {1 \over 6}{x^{ - {5 \over 6}}}$ D: ${1 \over 3}{x^{ - {3 \over 2}}} - {1 \over 6}{x^{ - {5 \over 6}}}$
- 求函数$y = \root 3 \of {x + \sqrt x } $的导数$y' = $( ) A: ${{1 + 2\sqrt x } \over {\root 3 \of {{{\left( {x + \sqrt x } \right)}^2}} }}$ B: $ {{1 + 2\sqrt x } \over {6\root 3 \of {{{\left( {x + \sqrt x } \right)}^2}} }}$ C: $ {{1 + 2\sqrt x } \over {6\sqrt x \cdot \root 3 \of {{{\left( {x + \sqrt x } \right)}^2}} }}$ D: $ {{1 + 2\sqrt x } \over {\sqrt x \cdot \root 3 \of {{{\left( {x + \sqrt x } \right)}^2}} }}$
- 计算\(\oint_L x ds\),其中\(\)为由直线\(y=x\),及抛物线\(y=x^2\)所围成的区域整个边界。 A: \({1 \over {12}}(5\sqrt 2 + 6\sqrt 5 {\rm{ - }}1)\) B: \({1 \over {12}}(6\sqrt 5 + 5\sqrt 2 {\rm{ - }}1)\) C: \({1 \over {12}}(5\sqrt 5 + 6\sqrt 2 {\rm{ - }}1)\) D: \({1 \over {12}}(5\sqrt 5 + 6\sqrt 2 + 1)\)
- 以\( (2,2,1) \)为起点,以\( (1,3,0) \)为终点的向量的方向余弦为( ). A: \( \cos \alpha = { { - 1} \over {\sqrt 3 }},\cos \beta = {1 \over {\sqrt 3 }},\cos \gamma = { { - 1} \over {\sqrt 3 }} \) B: \( \cos \alpha = {1 \over {\sqrt 3 }},\cos \beta = { { - 1} \over {\sqrt 3 }},\cos \gamma = { { - 1} \over {\sqrt 3 }} \) C: \( \cos \alpha = { { - 1} \over {\sqrt 3 }},\cos \beta = { { - 1} \over {\sqrt 3 }},\cos \gamma = { { - 1} \over {\sqrt 3 }} \) D: \( \cos \alpha = { { - 1} \over {\sqrt 3 }},\cos \beta = { { - 1} \over {\sqrt 3 }},\cos \gamma = {1 \over {\sqrt 3 }} \)