\tan ^{2}x \sec^{2}x\text{d}x=$( )
A: $\frac{1}{3}{{\tan }^{3}}x+C$
B: $-\frac{1}{3}{{\tan }^{3}}x+C$
C: $\frac{1}{3}{{\sec }^{3}}x+C$
D: $-\frac{1}{3}{{\sec }^{3}}x+C$
举一反三
- 不定积分$\int<br/>\tan ^{3}x \sec x\text{d}x=$( ) A: $\frac{1}{3} \sec^3 x+\sec x+C$ B: $\frac{1}{3} \sec^3 x-\sec x+C$ C: $\sec^3 x-\sec x+C$ D: $\sec^3 x+\sec x+C$
- \(\int { { {\tan }^{10}}x { { \sec }^{2}}xdx}\)=( ) A: \(-\frac{1}{11} { { \tan }^{11}}x+C\) B: \(\frac{1}{11} { { \tan }^{11}}x+C\) C: \(\frac{1}{11} { { \cot }^{11}}x+C\) D: \(-\frac{1}{11} { { \cot }^{11}}x+C\)
- \(\int { { {\sec }^{3}}xdx}\)=( ) A: \(\frac{1}{2}\sec x\cot x-\frac{1}{2}\ln \left| \sec x+\tan x \right|+C\) B: \(\frac{1}{2}\sec x\tan x+\frac{1}{2}\ln \left| \sec x+\tan x \right|+C\) C: \(-\frac{1}{2}\csc x\tan x+\frac{1}{2}\ln \left| \sec x-\cot x \right|+C\) D: \(-\frac{1}{2}\sec x\tan x-\frac{1}{2}\ln \left| \csc x+\tan x \right|+C\)
- \(\int { { {\sin }^{2}}x { { \cos }^{5}}xdx}\)=( ) A: \(\frac{1}{3} { { \sin }^{3}}x-\frac{2}{5} { { \sin }^{5}}x+\frac{1}{7} { { \sin }^{7}}x+C\) B: \(\frac{2}{3} { { \sin }^{3}}x-\frac{1}{5} { { \sin }^{5}}x-\frac{1}{7} { { \sin }^{7}}x+C\) C: \(\frac{1}{3} { { \cos }^{3}}x-\frac{2}{5} { { \cos }^{5}}x+\frac{1}{7} { { \cos }^{7}}x+C\) D: \(\frac{2}{3} { { \cos }^{3}}x-\frac{1}{5} { { \cos }^{5}}x-\frac{1}{7} { { \cos }^{7}}x+C\)
- 微分方程$y' = \sqrt{x},y(1)=0$的解为 A: $ \frac{2}{3} x^{\frac{3}{2}} + C $ B: $ \frac{2}{3} x^{\frac{3}{2}} -\frac{2}{3} $ C: $ x^{\frac{3}{2}}-1 $ D: $ x^{\frac{3}{2}}+C $
内容
- 0
微分方程\(2y''+5y'=5x^2-2x-1\)的通解是( )。 A: \(y=C_1+C_2e^{-\frac{5}{2}x}+\frac{1}{3}x^3-\frac{3}{5}x^2+\frac{7}{25}x\) B: \(y=C_1+C_2e^{-\frac{5}{2}x}+\frac{1}{3}x^3-\frac{3}{5}x^2\) C: \(y=C_1+C_2e^{-\frac{5}{2}x}+\frac{1}{3}x^3+\frac{7}{25}x\) D: \(y=C_1+C_2e^{-\frac{5}{2}x}-\frac{3}{5}x^2+\frac{7}{25}x\)
- 1
将函数\(f(x)=\sin^4 x\)展开成Fourier级数为 ____ . A: \(f(x) = \frac{3}{8}-\frac{1}{2}\cos 2x +\frac{1}{8}cos 4x\) B: \(f(x) = \frac{1}{4}-\frac{1}{2}\cos x +\frac{3}{8}cos 4x\) C: \(f(x) = \frac{1}{4}-\frac{1}{2}\sin 2x -\frac{3}{8}cos 4x\) D: \(f(x) = \frac{3}{8}-\frac{1}{2}\sin x -\frac{1}{8}cos 4x\)
- 2
(10). 已知在5重贝努里试验中成功的次数 \( X \) 满足 \( P\{X=1\}=P\{X=2\} \),则概率 \( P\{X=4\}= \)( )。 A: \(1- C_4^5 (\frac{1}{3})^4(\frac{2}{3}) \) B: \( C_5^4 (\frac{1}{3})^2(\frac{2}{3})^3 \) C: \( C_5^4 (\frac{1}{3})^4(\frac{2}{3})^4 \) D: \( C_5^4 (\frac{1}{3})^4(\frac{2}{3}) \)
- 3
方程${{x}^{2}}{{y}^{''}}-(x+2)(x{{y}^{'}}-y)={{x}^{4}}$的通解是( ) A: $y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{2}})$ B: $y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{4}})$ C: $y={{C}_{1}}x+{{C}_{2}}x{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{4}})$ D: $y={{C}_{1}}x+{{C}_{2}}x{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{2}})$
- 4
已知随机变量$(X,Y)$服从二维正态分布$N(1,0;9,16;-\frac{1}{2})$,则$Z=\frac{X}{3}+\frac{Y}{2}$的数学期望和方差分别为 A: $\frac{1}{2};3$ B: $\frac{1}{3};3$ C: $\frac{1}{3};11$ D: $\frac{1}{2};11$