• 2022-06-15
    不定积分$\int
    \tan ^{2}x \sec^{2}x\text{d}x=$( )
    A: $\frac{1}{3}{{\tan }^{3}}x+C$
    B: $-\frac{1}{3}{{\tan }^{3}}x+C$
    C: $\frac{1}{3}{{\sec }^{3}}x+C$
    D: $-\frac{1}{3}{{\sec }^{3}}x+C$
  • A

    内容

    • 0

      微分方程\(2y''+5y'=5x^2-2x-1\)的通解是( )。 A: \(y=C_1+C_2e^{-\frac{5}{2}x}+\frac{1}{3}x^3-\frac{3}{5}x^2+\frac{7}{25}x\) B: \(y=C_1+C_2e^{-\frac{5}{2}x}+\frac{1}{3}x^3-\frac{3}{5}x^2\) C: \(y=C_1+C_2e^{-\frac{5}{2}x}+\frac{1}{3}x^3+\frac{7}{25}x\) D: \(y=C_1+C_2e^{-\frac{5}{2}x}-\frac{3}{5}x^2+\frac{7}{25}x\)

    • 1

      将函数\(f(x)=\sin^4 x\)展开成Fourier级数为 ____ . A: \(f(x) = \frac{3}{8}-\frac{1}{2}\cos 2x +\frac{1}{8}cos 4x\) B: \(f(x) = \frac{1}{4}-\frac{1}{2}\cos x +\frac{3}{8}cos 4x\) C: \(f(x) = \frac{1}{4}-\frac{1}{2}\sin 2x -\frac{3}{8}cos 4x\) D: \(f(x) = \frac{3}{8}-\frac{1}{2}\sin x -\frac{1}{8}cos 4x\)

    • 2

      (10). 已知在5重贝努里试验中成功的次数 \( X \) 满足 \( P\{X=1\}=P\{X=2\} \),则概率 \( P\{X=4\}= \)( )。 A: \(1- C_4^5 (\frac{1}{3})^4(\frac{2}{3}) \) B: \( C_5^4 (\frac{1}{3})^2(\frac{2}{3})^3 \) C: \( C_5^4 (\frac{1}{3})^4(\frac{2}{3})^4 \) D: \( C_5^4 (\frac{1}{3})^4(\frac{2}{3}) \)

    • 3

      方程${{x}^{2}}{{y}^{''}}-(x+2)(x{{y}^{'}}-y)={{x}^{4}}$的通解是( ) A: $y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{2}})$ B: $y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{4}})$ C: $y={{C}_{1}}x+{{C}_{2}}x{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{4}})$ D: $y={{C}_{1}}x+{{C}_{2}}x{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{2}})$

    • 4

      已知随机变量$(X,Y)$服从二维正态分布$N(1,0;9,16;-\frac{1}{2})$,则$Z=\frac{X}{3}+\frac{Y}{2}$的数学期望和方差分别为 A: $\frac{1}{2};3$ B: $\frac{1}{3};3$ C: $\frac{1}{3};11$ D: $\frac{1}{2};11$