• 2022-06-15
    中国大学MOOC: 假设测试数据集中共计有70个正类样本,30个负类样本。且某次分类结果如下表所示(表中各项的含义如表下方的注释所示)。则分类的召回率是 (要求:用小数表示,且保留小数点后两位)。实际类别预测类别正例负例总计正例TP=40FN=30P(实际为正例)=70负例FP=10TN=20N(实际为负例)=30表中数据项的含义:True positives(TP): 被正确地划分为正例的个数,即实际为正例且被分类器划分为正例的实例数(样本数);False negatives(FN):被错误地划分为负例的个数,即实际为正例但被分类器划分为负例的实例数;False positives(FP): 被错误地划分为正例的个数,即实际为负例但被分类器划分为正例的实例数;Truenegatives(TN):被正确地划分为负例的个数,即实际为负例且被分类器划分为负例的实例数。
  • 0.57

    内容

    • 0

      把原来的正类预测成正类(TP),把原来的正类预测为负类(FN),把负类预测为正类(FP),将负类预测为负类(TN),召回率定义:R=TP/(TP+FN),如果有60个正样本,40个负样本,算法预测有50个正样本,其中只有40个是真正的正样本,则R=() A: 4/5 B: 1/3 C: 1/2 D: 2/3

    • 1

      一个正例(2,3),一个负例(0,-1),下面哪个是SVM超平面?( ) A: 2x+y-4=0 B: 2y+x-5=0 C: x+2y-3=0 D: 无法计算

    • 2

      “校勘通例”分为误字例、脱文例、____例、____例和错简例。

    • 3

      假设某分类器在一个测试数据集上的分类结果的混淆矩阵如下所示,请计算该分类器的错误率,以类别yes为正例,计算分类器的查准率precision为 %。【保留到整数位】 PredictedyesnoActualyes155no1020

    • 4

      在分类学习任务中,可以增加一些正例解决类别不平衡问题。( )