微积分2∫t^2dt/1+t
举一反三
- 以${{e}^{t}}$,$t{{e}^{t}}$为特解的二阶线性常系数齐次微分方程是 A: $\frac{{{d}^{2}}x}{d{{t}^{2}}}-x=0$ B: $\frac{{{d}^{2}}x}{d{{t}^{2}}}-2\frac{dx}{dt}+x=0$ C: $\frac{{{d}^{2}}x}{d{{t}^{2}}}-\frac{dx}{dt}+x=0$ D: $\frac{{{d}^{2}}x}{d{{t}^{2}}}-\frac{dx}{dt}=0$
- 求函数fourier积分f(t)={1-t^2丨t丨1
- 【单选题】y=f(x)=sinx,x(t)=t 2 ,d 2 y=()。 A. (2cost 2 -4t 2 sint 2 )dt 2 B. (2cost 2 +4t 2 sint 2 )dt 2 C. (cost 2 -4t 2 sint 2 )dt 2 D. (cost 2 +4t 2 sint 2 )dt 2
- X~E(2) ,对任意的 t > 0,概率P(X > 1+t|X > t)的值为
- 【多选题】若f 1 (t) = ɛ (-t) , f 2 (t) = e t ,则f 1 (t)* f 2 (t) = A. f 1 ꞌ (t)* f 2 (–1) (t) B. f 1 (–1) (t)* f 2 ꞌ (t) C. f 1 (t-3)* f 2 (t+3) D. f 1 (–3) (t)* f 2 ꞌꞌꞌ (t)