• 2022-05-26
    证明不等式[tex=10.929x2.571]dWrsryuu12Jfw+JXsmVJT6GgO9Y17xTK9/Q6HVoynSbX3U48VrBRvyCJhffV8Dar+T3QyhKQYgGm4h0ZCA6jsoXw791fBj1lGZWlgAhrvHo=[/tex],其中[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex]、[tex=0.5x1.286]PGyKeLDo0qv9T0n29ldi6w==[/tex]、[tex=0.5x1.286]m/VGGUpsnKNFGYXigdTc/A==[/tex]是任意的非负实数.
  • 证明:根据所证不等式的形式,易见取对数后的形式更简便.将[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex]、[tex=0.5x1.286]PGyKeLDo0qv9T0n29ldi6w==[/tex]、[tex=0.5x1.286]m/VGGUpsnKNFGYXigdTc/A==[/tex]分别视为变量[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]、[tex=0.571x1.286]Hz6y44ELFVLLNrLVhO3CQA==[/tex]、[tex=0.5x1.286]asctJDWpGaq/ETe64ANZ1Q==[/tex]的值,则题设问题可归结为:求目标函数[tex=13.214x1.286]muSII20Rg8KKqjiM2iNz2r17mM6J7PSKXXSsJjwVh3hBjx6F2bm35LRlFSnmlIB7[/tex][tex=8.5x1.286]13Us5klocREVkKA7yyeMCgLVQtQMTjG0vZLSIajkfMc=[/tex]在约束条件[tex=13.571x1.286]CyTAGmPUvRai8S76pwpNI/uXb+pnWtmJlPE4q/1Kq7g=[/tex]下的最大值,其中[tex=1.071x1.286]/vZEgalrrOYkhzS9SMg+fg==[/tex]是正常数.为此作拉格朗日函数[tex=23.429x1.286]s/Q1FC0y94IYXwlDrMk2m1gOqrU7PWcPg+LuNi817vmLYu334lQgyUO4DlXK39Z/fD39wjB7q55me8w2DP+DwMz5n10+EB9QoGgEDemm+dM=[/tex],其中[tex=2.357x1.286]W6+jNfDjkvQb4nWE+47z2g==[/tex],[tex=2.357x1.286]cyLpros3NFCEwVSzDDR9cQ==[/tex],[tex=2.286x1.286]5t/j3K+l3DXv8ylrB5Zq1w==[/tex].解方程组.解方程组[tex=7.571x7.786]7EJHVCtO2IWq3KpdB+jQsrcg+Y8axQ/3ApV5aADw6FQvf6/caz6pjV++ecVC9oZEjIwXxxwk13lZFWnawh7xfmtHFbANRGsQo+CByJ+3tTFs+oUt9886RLlfwvEvhZ6tRl5HJLAQKMRoi66UXbjb6oNzwtoKUA68u5UEJSNWQ/SkidW8zajeeveOLZ2/4xqE[/tex],得[tex=4.786x2.214]xuJrzjGBdOvOHUneA9djwWxuOm/rNGiKC20FpozXYdf60jeuxp+qnIp+ASDdoy6/[/tex],将其代人约束条件中,得唯一可能的极值点[tex=2.929x1.286]KWOych6Y+krCV2fMpbomaw==[/tex],[tex=3.357x1.286]nvmQKMYYH6kjJ3WbbcVbNA==[/tex],[tex=3.357x1.286]PU9261HL9g0q5IxmtTEK/w==[/tex].因为[tex=12.214x1.786]9PPyLBHveIZv5TuPLgYR5GJquhHy6sWhw78c8XfuY0J4tQIPR5x7r2xyMlmWiYFUFDxnITmfwnqEr3G7xRw2kA==[/tex],显然[tex=3.714x1.286]PsAK467U1/a1oG7egZ+PGQ==[/tex]无最小值,故函数[tex=0.643x1.286]+RQz+inOZSqc5WvKyEpD0Q==[/tex]在点[tex=5.643x1.286]EM70/ghyni5yRs4TdrhRB5bTTEvs9Dq9oPGiBsxjcmY=[/tex]取到最大值:[tex=18.929x1.286]Rol/02cswiVxi4RQo8rWQdh68ZPs+d3Y6sXFR//pvbHUp7wR+jpQ4wyvmDEtUyUaxFd6lNQykZwFirOaaMx5Gg==[/tex][tex=4.929x1.286]CJ6k6Ajov1wm9qLc1N+OY/xp/9hSQ29S44wb3uJFWzY=[/tex].于是,由约束条件[tex=18.5x2.571]OKx6jqnS//aJ5djit0UUvIOTvB7goddQgOLn2DPTWf5DmqmP3blyQMxpb4vWt8feiD3ey3DaaN+hOSuodhBdJK3rnktM0TonQpeWdUhEhnh3avLYnRskqCL/NvxCbKNk[/tex],即[tex=11.357x2.571]aXrvF3iN/uzNUhKflxm+wpPXAwY/grUSzEKApRC15H/GPra+9lZa1b1AAswyGfrNTxymFiycV/2EuRwGnjy+lHv+QXl7Ob4tMvbHLzWd99E=[/tex],取[tex=2.429x1.286]FQFdyBvmv+TKpBgt7chSDw==[/tex],[tex=2.286x1.286]7tZR2/6T0uVONiBmJvfVcA==[/tex],[tex=2.286x1.286]fqs1ho9ifGanLThL8syy4w==[/tex],即有[tex=10.929x2.571]dWrsryuu12Jfw+JXsmVJT6GgO9Y17xTK9/Q6HVoynSbX3U48VrBRvyCJhffV8Dar+T3QyhKQYgGm4h0ZCA6jsoXw791fBj1lGZWlgAhrvHo=[/tex].当[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex]、[tex=0.5x1.286]PGyKeLDo0qv9T0n29ldi6w==[/tex]、[tex=0.5x1.286]m/VGGUpsnKNFGYXigdTc/A==[/tex]至少有一个为0时,不等式显然成立.

    举一反三

    内容

    • 0

      已知向量[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex],[tex=0.5x1.286]PGyKeLDo0qv9T0n29ldi6w==[/tex],[tex=0.5x1.286]m/VGGUpsnKNFGYXigdTc/A==[/tex]满足[tex=5.5x1.286]XBzGtIEZUjabuA8/EfuCKA==[/tex],证明:[tex=8.857x1.286]TP7/vkvKTaS3CcrLZkxwyOAtrbYWag3hfgRq5MPkYHFqGl8em4+5j+nWWk9VAPT0[/tex]。

    • 1

      证明:分式线性变换[tex=4.714x2.071]Mt2EjEO9L+5PcMdvWrrmcNSCOYx04fPwVkTwhlkOQhc=[/tex]把上半平面映为上半平面的充要条件是[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex],[tex=0.5x1.286]PGyKeLDo0qv9T0n29ldi6w==[/tex],[tex=0.5x1.286]m/VGGUpsnKNFGYXigdTc/A==[/tex],[tex=0.571x1.286]E8TCNnEPtMKJ0mC2xxh0/Q==[/tex]都是实数,而且[tex=4.857x1.286]FSMlTKeWQlm4IqVe+WRctw==[/tex].

    • 2

      设[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex],[tex=0.5x1.286]PGyKeLDo0qv9T0n29ldi6w==[/tex],[tex=0.5x1.286]m/VGGUpsnKNFGYXigdTc/A==[/tex]是互不相等的实数,且[tex=4.857x1.286]pz6BXMfR3fEU2s6/vRGU1pqY7wYpIAckH9HPLUpg30M=[/tex],[tex=4.857x1.286]vylqZ2Xr5MOP03GTmSmqHw==[/tex],[tex=4.786x1.286]36SQMYBDapeOE18TO40HbPE/QWKcXFEKAmEUl1XkU+w=[/tex],则[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex],[tex=0.571x1.286]Hz6y44ELFVLLNrLVhO3CQA==[/tex],[tex=0.5x1.286]asctJDWpGaq/ETe64ANZ1Q==[/tex] A: 都大于0 B: 至少有一个大于0 C: 都不小于0 D: 至少有一个小于0 E: 都小于0

    • 3

      设[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex],[tex=0.5x1.286]PGyKeLDo0qv9T0n29ldi6w==[/tex]是有理数,满足[tex=9.214x2.929]wLLnuhaTkejykG34Lose4Gk3bDdglgIOUPyksgtxtXmt1sHAbktViJ8p1ePynplK3+wsNPKnCMhi2L94ONh39NTRjZdrdBEvRo1TQVd9L2o=[/tex],求[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex],[tex=0.5x1.286]PGyKeLDo0qv9T0n29ldi6w==[/tex]的值。

    • 4

      设[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex],[tex=0.5x1.286]PGyKeLDo0qv9T0n29ldi6w==[/tex],[tex=0.5x1.286]m/VGGUpsnKNFGYXigdTc/A==[/tex]都是有理数,满足[tex=5.5x1.286]XjN3CVeqEcvwD1Mr05v7dJhLHG6mLfhlDspJ6ccvXqA=[/tex],证明:[tex=1.429x1.286]LKd3BGZEfvQxEr+S8ENtsw==[/tex],[tex=1.286x1.286]dkY1vwb+krnAlYe8NAHdMw==[/tex]也都是有理数。