对总体X的均值和方差进行矩估计,matlab给出的语句为( )。
A: sigma2_ju=moment(X)
B: sigma2_ju=moment(X,2)
C: mu_ju=mean(X,2)
D: mu_ju=mean(X)
A: sigma2_ju=moment(X)
B: sigma2_ju=moment(X,2)
C: mu_ju=mean(X,2)
D: mu_ju=mean(X)
举一反三
- (3). 设随机变量 \( X \) 的数学期望 \( E(X)=\mu \),方差 \( D(X)=\sigma ^2 \),\( P\{\left|{X-\mu } \right|< 4\sigma \}\ge \)()。
- ${X_1},{X_2},...,{X_n}$是来自正态总体X~N($\mu$ ,${\sigma ^2}$)的样本,用估计法估<br/>计参数$\mu,{\sigma^2}$,分别为() A: $\overline X ,2{s^2}$ B: $2\overline X ,{s^2}$ C: $\overline X,{s^2}$ D: $\overline X,s$
- 2.${X_1},{X_2},...,{X_n}$是来自正态总体X~N($\mu$ ,${\sigma ^2}$)的样本,用估计法估<br/>计参数$\mu,{\sigma^2}$,分别为() A: $\overline X ,2{s^2}$ B: $2\overline X ,{s^2}$ C: $\overline X,{s^2}$ D: $\overline X,s$
- (10). 设某种元件的寿命 \( X\sim N(\mu ,\sigma ^2) \),其中参数 \( \mu ,\sigma^2 \) 未知,为估计平均寿命 \( \mu \) 及方差 \( \sigma^2 \),随机抽取7只元件得寿命为(单位:小时)
- (2). 设 \( X_1 ,X_2 ,\cdots ,X_n \) 是来自总体 \( X \) 的样本,\( X \) 的分布由参数 \( \mu \) 和 \( \sigma \) 确定。假定 \( \mu \) 和 \( \sigma \) 都未知,为了对 \( \mu \) 区间估计,一般是先构造()。