• 2022-05-27
     设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 为环, [tex=1.5x1.214]VxtvWlgGBBypyenN8OD8Wg==[/tex] 是[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的两个理想. 令[p=align:center][tex=11.5x1.357]8CM8TB92oV/hI4hxvCjpVOI3C17io1Q4g2yEZDWMOr94qwSdpSa3twYxbMsnM69a51YRJPm5UjHeMkuicETmlg==[/tex]证明: [tex=2.429x1.357]fvTZI9dBC5syJ0twORMkxA==[/tex] 是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的理想. 
  • 证明   对任意的 [tex=7.214x1.357]TC59sJ9Jtg7KHpVCfM+rWk5TTs5YWDPlRZPz0WoJfvY=[/tex] 有[p=align:center][tex=10.286x4.5]qeiYnKXLEhyhuGRg8yLtr9/oHntZwxn1BY4lgb5rOuZyzLcxfY6Udgn51rIO80ZtmcC7qUZHxNR0z+ov0qNHapZC1dsyxDp7kUK89E6fnKewISylTzqSCkKVyXS1xBT0e8925yrGdlQzB190SnNm60IxlmrQbjBmsI7rk0oYIPmO6pvEdJJT5X4Ll1yXvOvZLKBfDRuzx33QQiFKybYq0A==[/tex]同理可证, [tex=14.429x1.357]7NaZu+MPVJNuQvJ4EfpkUPxY2kEGsMOezqv15vs9fgauIjky35Awcsu7XFzpwZT+S1GjQlt9RPKDyE6bXkKcZg==[/tex]所以 [tex=2.429x1.357]fvTZI9dBC5syJ0twORMkxA==[/tex]为 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的理想.

    举一反三

    内容

    • 0

      设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 为交换环, [tex=0.5x1.0]3EF1VcotinZAjtQqtSWaxw==[/tex] 是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的非零理想, [tex=0.571x1.0]EnSTrJsHc9I00M+IaN7q+w==[/tex] 是 [tex=0.5x1.0]3EF1VcotinZAjtQqtSWaxw==[/tex] 的素理想. 证明: [tex=0.571x1.0]EnSTrJsHc9I00M+IaN7q+w==[/tex] 是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的理想. 

    • 1

      设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是有单位元的有限交换环. 证明: [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的每一个素理想都是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的极大理想.

    • 2

      设[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]是环[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]到环[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的同构, 证明: [tex=1.571x1.429]WwcGTNxNgqKGUcObs50zWg==[/tex]是环[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]到环[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的同构. 

    • 3

      设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是偶数环, [tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex] 是素数, [tex=1.786x1.357]CKV1ALvFVhxcb15e70XQsg==[/tex] 是不是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的极大理想?是不是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的素理想?

    • 4

      证明   设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是有单位元 [tex=0.5x0.786]rCTQ93hYjIOF3vc8FasIqg==[/tex]的环, 则映射[p=align:center][tex=5.143x1.214]4huI4vPuOC5DwSwh9v+pqmZ8zIR4uMpqJJGCJdNZD5284UHYZUBluqcDPeiVBFsU[/tex][p=align:center][tex=3.857x0.786]xjKJOk7jgWMso5Sqhr+k7m3CrOAppVSxOnlWEawUee8=[/tex]是环 [tex=0.714x1.0]oaXPjenEQATpEhakjoja5g==[/tex] 到 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的同态.