举一反三
- 设有长为[tex=0.357x1.0]Le5Jr6QhXJv1Yp4NjrbGVA==[/tex]的均匀细杆,一端保持温度为[tex=0.929x1.0]M6rCjWOyyOXOB1PmbinM2A==[/tex],另一端绝热.杆的初温为 0 .求杆中温度的分布和变化.
- 长为[tex=0.357x1.0]Le5Jr6QhXJv1Yp4NjrbGVA==[/tex]的杆,侧面和[tex=1.857x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]端绝热,另一端[tex=1.714x1.0]OFSQaAQTidbnVE7HphlqPw==[/tex]与外界按Newton冷却定律交换热量(设外界温度为0),初始时刻杆内温度为常数[tex=0.929x1.0]M6rCjWOyyOXOB1PmbinM2A==[/tex],求杆内温度分布.
- 求解细杆的热传导问题。杆长为[tex=0.357x1.0]Le5Jr6QhXJv1Yp4NjrbGVA==[/tex],初如温度为均匀的[tex=0.929x1.0]M6rCjWOyyOXOB1PmbinM2A==[/tex],两端温度分另保持为[tex=0.929x1.0]6ajasqZpuIbDhIXAyBtsFg==[/tex]和[tex=0.929x1.0]uAwLQBNqnyRiVTDw5VUb5Q==[/tex]。
- 长为 [tex=0.357x1.0]Le5Jr6QhXJv1Yp4NjrbGVA==[/tex] 的均匀杆,侧面绝缘一端温度为零,另一端有恒定热流 [tex=0.5x1.0]jedlXyMYwmfVwxRj2j9sSw==[/tex] 进入(即单位时间内通过单位截面积流入的热量为 [tex=0.857x1.357]F6u8P2C+Ywi6OG5fLdWvhA==[/tex], 杆的初始温度分布是 [tex=3.286x2.429]yR4YeApmcNtgK86Rfb55D3gexEpiZSxsx1j9z4YJfZo=[/tex], 试写出相应的定解问题。
- 求解均匀细杆的导热问题,设杆的侧面是绝热的,初始温度为零,[tex=1.714x1.0]OFSQaAQTidbnVE7HphlqPw==[/tex]端保持为零度而另一端[tex=1.857x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]的温度为[tex=1.143x1.0]yYwm/CsnEsivP43lVC9u9Q==[/tex]([tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为常数).
内容
- 0
半无限长、侧面绝热的匀质细杆,其端点在零温介质中自由冷却.杆的初始温度已知为[tex=2.071x1.357]eAvaTAXWWX5VwHAZCgurVQ==[/tex],求杆上的温度分布.
- 1
有一根均匀弹性细杆,长为[tex=0.357x1.0]Le5Jr6QhXJv1Yp4NjrbGVA==[/tex],一端固定,另一端受外力 [tex=4.786x1.0]06FQuz8uV5PgBt57DNOI9H7nMJczEJRN/ixtklR3kPM=[/tex] 作用.杆的初始位移与速度都为 0,求杆的纵向振动规律.
- 2
一长为l的均匀导热细杆,杆上有热源,单位长度杆上的热源强度为[tex=7.857x1.357]nCFy5eGsoFZA0yOuuUqVf02jYVQExVGeNzluBeAzgbQ=[/tex]端绝热,[tex=1.714x1.0]z+3PraJ7SDoHa3jz672t+w==[/tex]端保持0℃,初始温度分布为[tex=3.929x1.357]WagE2Q2ni93CvVVKcmW72g==[/tex],试求杆上各处温度如何随时间变化的?其中c为杆的比热容,[tex=0.571x1.0]BMX8X5xI0h1MuijqrEhCyw==[/tex]为杆的线密度,[tex=0.929x1.0]aU2z7XI+wLpAUTbUnCYc1Q==[/tex]为常数,侧面绝热.
- 3
长度为[tex=0.357x1.0]Le5Jr6QhXJv1Yp4NjrbGVA==[/tex] 的均匀细杆的初始温度为零度, 在端点[tex=1.857x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex] 处保持常温 [tex=0.929x1.0]M6rCjWOyyOXOB1PmbinM2A==[/tex], 而在端点 [tex=1.714x1.0]OFSQaAQTidbnVE7HphlqPw==[/tex]及侧面上皆与周围介质有热交换, 介质的温度为零度. 此时杆上的温度分布函数 [tex=2.786x1.357]+U7nmL0dLo7Jd51bkG6law==[/tex] 满足[br][/br][p=align:center][tex=21.643x4.643]GE56u9QCDTqcLxZ66HADyp/+P0Awfy7v9OUhBVPnd1MYML0OyrAndX25kEJa8oQjkCe1LIdpE84eFHwjE4UkdB0lhr4THTI/DxqgGUY+wUNqMFNEtbetzxzUjogqkcIRu1veQxIYUnun4V7o7G0PqB2qcSHd7VJD9/7YnTXkU1tIT1/VBVBsuBc0f+cN5lRdEKaQTnGcKf/7HEYUyG0AH5sGaM4VwLYEa9w9b8Luf883qRjiXKeqkK4HVQxuFFSq0ZmpWDZTsaWW7bulA6H3zg==[/tex]试求解[tex=3.071x1.357]COt8W1HhOz/vb+A6YQ3HGw==[/tex]
- 4
长为L的均匀细杆,侧面绝缘,一端温度为0,另一端有恒定热源q进入(即单位时间内通过单位截面积流入的热量),杆的初始温度分布为[tex=4.286x2.357]JD0MmfP3ZLhzbGriznlnT9HqVKQ8/0fWEtaIjftc8ws=[/tex],试写出相应的定解问题.