• 2022-07-26
    求下列伯努利方程的通解[tex=7.857x1.429]wf1ObAhP0Jo+z1+AE2AUzHXaLwd8AwwPiyn/j5Ih7KbHRgfHwHEMSrlJaw0KwzZL[/tex].
  • 方程两端同除以[tex=1.5x1.429]Tv+HbaerfLF+ujK+RoXpYw==[/tex], 方程化为 [tex=10.571x2.357]M3rhq4DPB0OKFpAS9QmAweyNv+9LhMesPgAGxCO5Vd1MTdzUESNgHBMxwO6P2QsrPTxnC+UFcvOXh1sOMXUdpw==[/tex].令 [tex=2.714x1.429]ih42IVM4xpVeAtAwbqR1sw==[/tex], 则 [tex=5.714x2.429]eHmJ6WkcVxLNZ4Gfz3qUftpFdwr5EEF94QdDv0UsZqmeFVAUSiuBEFnYszpGmvjGc8XIwgISN3s8UQrswFBVKg==[/tex], 于是所给方程化为一阶线性方程[tex=8.5x2.429]4MHhesgJJwrKkcFfvkAG+6Ooj2heAZvxBSTPQIUZTvz2MicP3YsZ42DZC2eAqjU3TOpoh2w3Wt3wfC276dgBcA==[/tex].由一阶线性方程的通解公式得[tex=34.071x2.786]XZUBIked4oKac3dsi2EtsxpkIBFHlE0oPMbJyRVKo8FPFRxKMvNoDXaQug1DNpsrtRR+D75hA1QcIM6SjTJeH8OfmHNFIPum9D+/2LAIIwHnsYrPUL+4F1mQjL/celVz6ZRBdjyv0uj4dBajGUvGAnxoaGBgWEqXkx1U/cWDtD9AU5d7HPVoeIxFujGlddfjkeTNMJzW/ZBCITAnSgrVWKqASKjPDmo61mt7sDmIKtE=[/tex].以 [tex=1.5x1.429]1H0XKu5M5yEj4WOEusP0lA==[/tex] 代 [tex=0.5x0.786]C7x+w8+jOPZzxFrGGne6Dw==[/tex] ,即得原方程的通解[tex=10.357x1.5]L8/92pcxcuYKNS1N/UYUtpUSGCFL5iUpl7nCa80rMkw=[/tex].

    内容

    • 0

      求下列伯努利方程的通解[tex=6.143x1.429]jaDoGH+6EU9uDrexymZFae+5uC164f2GDeUVcw3oE+c=[/tex].

    • 1

      >>>x= [10, 6, 0, 1, 7, 4, 3, 2, 8, 5, 9]>>>print(x.sort()) 语句运行结果正确的是( )。 A: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] B: [10, 6, 0, 1, 7, 4, 3, 2, 8, 5, 9] C: [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0] D: ['2', '4', '0', '6', '10', '7', '8', '3', '9', '1', '5']

    • 2

      【单选题】Which of the following matrices does not have the same determinant of matrix B: [1, 3, 0, 2; -2, -5, 7, 4; 3, 5, 2, 1; -1, 0, -9,-5] A. [1, 3, 0, 2; -2, -5, 7, 4; 0, 0, 0, 0; -1, 0, -9, -5] B. [1, 3, 0, 2; -2, -5, 7, 4; 1, 0, 9, 5; -1, 0, -9, -5] C. [1, 3, 0, 2; -2, -5, 7, 4; 3, 5, 2, 1; -3, -5, -2, -1] D. [1, 3, 0, 2; -2, -5, 7, 4; 0, 0, 0, 1; -1, 0, -9, -5]

    • 3

      set1 = {x for x in range(10)} print(set1) 以上代码的运行结果为? A: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} B: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10} C: {1, 2, 3, 4, 5, 6, 7, 8, 9} D: {1, 2, 3, 4, 5, 6, 7, 8, 9,10}

    • 4

      设二维离散随机变量[tex=2.5x1.357]PWg5V4GQQafckGNgbx6gmw==[/tex]的可能值为(0, 0),(−1, 1),(−1, 2),(1, 0),且取这些值的概率依次为1/6, 1/3, 1/12, 5/12,试求[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]与[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex] 各自的边际分布列.