把原来的正类预测成正类(TP),把原来的正类预测为负类(FN),把负类预测为正类(FP),将负类预测为负类(TN),召回率定义:R=TP/(TP+FN),如果有60个正样本,40个负样本,算法预测有50个正样本,其中只有40个是真正的正样本,则R=()
A: 4/5
B: 1/3
C: 1/2
D: 2/3
A: 4/5
B: 1/3
C: 1/2
D: 2/3
举一反三
- 【单选题】混淆矩阵中假负是指() A. 模型预测为正的正样本 B. 模型预测为负的正样本 C. 模型预测为正的负样本 D. 模型预测为负的负样本
- 下列对混淆矩阵说法正确的是()。 A: TP:将正样本识别为正样本的数目(概率) B: FP:将负样本识别为正样本的数目(概率) C: FN:将正样本识别为负样本的数目(概率) D: TN:将负样本识别为正样本的数目(概率)
- 我们知道二元分类的输出是概率值。一般设定输出概率大于或等于 0.5,则预测为正类;若输出概率小于 0.5,则预测为负类。那么,如果将阈值 0.5 提高,例如 0.6,大于或等于 0.6 的才预测为正类。则准确率(Precision)和召回率(Recall)会发生什么变化?(precision=TP/(TP+FP),recall=TP/(TP+FN))。 A: 准确率(Precision)增加或者不变 B: 准确率(Precision)减小 C: 召回率(Recall)增加或者不变 D: 召回率(Recall)增大
- 中国大学MOOC: 假设测试数据集中共计有70个正类样本,30个负类样本。且某次分类结果如下表所示(表中各项的含义如表下方的注释所示)。则分类的召回率是 (要求:用小数表示,且保留小数点后两位)。实际类别预测类别正例负例总计正例TP=40FN=30P(实际为正例)=70负例FP=10TN=20N(实际为负例)=30表中数据项的含义:True positives(TP): 被正确地划分为正例的个数,即实际为正例且被分类器划分为正例的实例数(样本数);False negatives(FN):被错误地划分为负例的个数,即实际为正例但被分类器划分为负例的实例数;False positives(FP): 被错误地划分为正例的个数,即实际为负例但被分类器划分为正例的实例数;Truenegatives(TN):被正确地划分为负例的个数,即实际为负例且被分类器划分为负例的实例数。
- 我们知道二元分类的输出是概率值。一般设定输出概率大于或等于 0.5,则预测为正类;若输出概率小于 0.5,则预测为负类。那么,如果将阈值 0.5 提高,例如 0.6,大于或等于 0.6 的才预测为正类。则准确率(Precision)和召回率(Recall)会发生什么变化(多选)?