以下流场有流函数的有()
A: u=5y, v=2x,w=0
B: u=5x, v=-5y,w=2z
C: u=2cos(xy), v=-2cos(xy), w=0
D: u=-6xy, v=3y2, w=0
A: u=5y, v=2x,w=0
B: u=5x, v=-5y,w=2z
C: u=2cos(xy), v=-2cos(xy), w=0
D: u=-6xy, v=3y2, w=0
A,D
举一反三
- 设\(z = u{e^v}\),\(u = {x^2} + {y^2}\),\(v = xy\),则\( { { \partial z} \over {\partial x}}=\) A: \({e^{xy}}({x^2}y + {y^3} + 2x)\) B: \({e^{xy}}({x}y^2 + {y^3} + 2x)\) C: \({e^{xy}}({x}y + {y^3} + 2x)\) D: \({e^{xy}}({x^2}y + {y^2} + 2x)\)
- 设\(z = u{e^v}\),\(u = {x^2} + {y^2}\),\(v = xy\),则\( { { \partial z} \over {\partial y}}=\)( )。 A: \({e^{xy}}({x}y^2 + {x^3} + 2y)\) B: \({e^{xy}}({x^2}y + {x^3} + 2y)\) C: \({e^{xy}}({x}y^2 + {x^3} + 2x)\) D: \({e^{xy}}({x}y+ {x^3} + 2y)\)
- 设\(z = u{e^v}\),\(u = x + y\),\(v = xy\),则\( { { \partial z} \over {\partial x}}=\) A: \({e^{xy}}(1 + xy + {y^2})\) B: \({e^{xy}}(1 + xy + {y^3})\) C: \({e^{xy}}(x+ xy + {y^2})\) D: \({e^{xy}}(y+ xy + {y^2})\)
- 函数 $y=5^{(3x+1)^2}$ 的复合过程为 ( ). A: $y=5^u, u=v^2, v=3x+1$ B: $y=u^2, u=5^v, v=3x+1$
- 设\(z = {e^u}\sin v,\;u = xy,\;v = x + y\),则\( { { \partial z} \over {\partial y}}=\)( ) A: \(x{e^{xy}}\sin \left( {x + y} \right) + {e^{xy}}\cos \left( {x + y} \right)\) B: \(x{e^{xy}}\sin \left( {x + y} \right) \) C: \( {e^{xy}}\cos \left( {x + y} \right)\) D: \(x{e^{xy}}\sin \left( {x + y} \right) - {e^{xy}}\cos \left( {x + y} \right)\)
内容
- 0
关系模式R(U,V,W,X,Y,Z),函数依赖F={U→V,W→Z,Y→U,WY→X},分解ρ={WZ,VY,WXY,UV}。
- 1
下列选项中属于二元函数的是( ). A: \( y = \tan x \) B: \( y = {x^3} \) C: \( z = 2{x^2} + xy - 4{y^2} \) D: \( u = {e^v} \)
- 2
函数 y = e^(sinx^2)是由哪几个函数复合而成? A: y=e^u, u=sinv, v=x B: y=e^u, u=v^2, v=sinx C: y=e^u, u=sinv, v=x^2 D: y=e^u, u=sinx
- 3
若u、w、x、y均是正整型变量,则以下正确的switch语句是( )。 A: switch(x+y){ case 10 : u=x+y; break;case 11 : w=x-y; break;} B: switch x{ default : u=x+y;case 10 : w=x-y; break;case 11 : u=xy; break;} C: switch(xx+y*y){ case 3:case 3: w=x+y; break;case 0: w=y-x; break;} D: switch(pow(x,2)+pow(y,2)){ case 1: case 3: w=x+y; break;case 0: case 5: w=x-y;}
- 4
求下面流场中M(x1, y1, z1)点的涡度和散度。u=x, v=y, w=2z A: 0, 0 B: 1, 4 C: 0, 2 D: 0,4