举一反三
- 将方程 [tex=4.714x1.571]Hxr+WAd0pdX8wRxoSXYGRyuHVKJwsEa0xpZOhnjP6siL0vM3TfghvynSfP0Lf0Yl[/tex] ([tex=0.429x0.929]r8lLiDb0KHTzu/2y/Au89w==[/tex] 为实参数)给出的曲线用一个实直角坐标方程表示出.
- 将方程 [tex=4.643x1.571]c8f8pYOWcLRchWEduA0fr/O2b90VKpYNYnxloDXyJoDdfZ+uSZzovgfmUSCjc5op[/tex] ([tex=0.429x0.929]r8lLiDb0KHTzu/2y/Au89w==[/tex] 为实参数)给出的曲线用一个实直角坐标方程表示出.
- 将下列方程(t 为实参数)给出的曲线用一个实直角坐标方程表示:[tex=4.071x1.357]xyoTv+4S+LMRZD6T18XBew==[/tex].
- 设[tex=2.786x1.357]AdT1Ywl2aGGiB/EXxjVWAA==[/tex]为[tex=0.429x0.929]r8lLiDb0KHTzu/2y/Au89w==[/tex]时刻的消费水平,[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex](为常数)是[tex=0.429x0.929]r8lLiDb0KHTzu/2y/Au89w==[/tex]时刻的投资水平,[tex=2.929x1.357]kG0nCtqPr/uYlTBNdenzOA==[/tex]为[tex=0.429x0.929]r8lLiDb0KHTzu/2y/Au89w==[/tex]时刻的国民收入,它们满足[tex=8.857x3.357]fnpmC2J6JmQBLyo5NmGAz4SYZuM09ZmogZQNx7HZ+/ea7/kbX0wHuYFcxJLtBKfIWjNApc2tX6GAYbgohuLjFnhGcw6RKpeMAJys0d1wptE=[/tex],其中[tex=8.286x1.214]ETbCmEd46Z/AcmZYfvB36g==[/tex]均为常数.求[tex=3.786x1.357]L+aF9FS6Xp9Rg/2QJPWSyQ==[/tex]
- 多元线性回归分析中,[tex=0.643x1.0]J+LW/0i6Fe+lWEmBUgT8zg==[/tex]检验与[tex=0.429x0.929]r8lLiDb0KHTzu/2y/Au89w==[/tex]检验的关系是什么?为什么在作了[tex=0.643x1.0]J+LW/0i6Fe+lWEmBUgT8zg==[/tex]检验以后还要作[tex=0.429x0.929]r8lLiDb0KHTzu/2y/Au89w==[/tex]检验?
内容
- 0
一 质点沿直线运动,其运动方程为[tex=7.214x1.5]f3U/AUzXAuXOOGBwlv9dAVXmKUIsH5YWOj0XRFGw5Ww=[/tex],在[tex=0.429x0.929]r8lLiDb0KHTzu/2y/Au89w==[/tex]从0秒到3秒的时间间隔内,则质点走过的路程为多少?
- 1
设在时间[tex=0.429x0.929]r8lLiDb0KHTzu/2y/Au89w==[/tex](分钟)内,通过某交叉路口的汽车数服从参数与[tex=0.429x0.929]r8lLiDb0KHTzu/2y/Au89w==[/tex]成正比的泊松分布,已知在 1 分钟内没有汽车通过的概率为 0.2 ,求在 2 分钟内有多于 1 辆汽车通过的概率.
- 2
求[tex=0.429x0.929]r8lLiDb0KHTzu/2y/Au89w==[/tex]的值,使二次型[tex=22.429x1.571]JLm2GSM4LZ595FWooMQMWd9gmISBtAIl+HEGB8g2d0ZGTMu6wTejMoVJxYJ8fuDc6KTvHLIs8fmn9Ob44d1o0JLs6vUcKAeXqPXRXpHZrZ0=[/tex]是正定的。
- 3
气体分子在[tex=1.643x1.0]e6RhHIicI4xKNcYb53RxjQ==[/tex]时与另一分子碰撞后,它在时刻[tex=0.429x0.929]r8lLiDb0KHTzu/2y/Au89w==[/tex]以前不与其它分子碰撞,而在[tex=3.929x1.357]Pm6nmjy2OiU4XjMAvHqFMg==[/tex]这段时间内与其它分子碰撞的概率等于[tex=4.214x1.357]8//qjYPil+65w3VDo4KlbrKqvzt5o6EVPFxH+xLBtKc=[/tex].求它的自由运行时间(即连续两次碰撞之间的时间)大于[tex=0.429x0.929]r8lLiDb0KHTzu/2y/Au89w==[/tex]的概率.
- 4
给定权[tex=11.5x1.214]bwHcbWQYaLzA8mBfSA1woLwiq1vnxgGigKkTWrMH0ME=[/tex]c) 说明如何构造一棵最优[tex=0.429x0.929]r8lLiDb0KHTzu/2y/Au89w==[/tex]叉树。