• 2022-07-28
       一个半径为[tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex]、长度为[tex=0.714x1.0]ravtxd2oof9d0U26ZFAIhw==[/tex]的圆[tex=0.857x1.0]HcQeTeQtUqN73yUJqDRZkQ==[/tex]匝。若导线中电流为[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]。求在圆柱体轴线上任一点的磁感应强度。在圆柱中心的磁感应强度是多少?并求出在圆柱轴线末端的[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]的表达式。
  • 解 已知半径为 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex], 电流为 [tex=0.5x1.0]3EF1VcotinZAjtQqtSWaxw==[/tex]的磁偶极子在中心轴上 [tex=0.643x1.0]uPu/UBwxTDghY6MHYDLmcA==[/tex] 高处[p=align:center][tex=8.286x3.0]FGxAssGo4Y5jVk5BVcr8NWhoeAWjF1lYJs1l+0htTNw/WWDaD/fPjEXlr2qui2gCRcW7bm9fc6tCRl9u8q3KHX+GvoVRgfW3/NpRLQSqgtE=[/tex]将 [tex=1.286x1.429]dtzYQUqdNApV0yBP5JYWRw==[/tex] 宽度内的电流看成是线电流, 代入上式得[p=align:center][tex=11.143x3.929]ByU16IixPGdZHNWdwt3bSq2e3xEasS40jSZVnwg6/arbM+kf46+PBNG6gwNKHLMwA2kV/FwRJSQBjLDYN1um6JH6hPeyyuLtM1205wa3RSzOU2d5buiazghzMJq1OFR8oItxSlEiWznrT8761ULBOn3riGIbewtvN2Ha9tRt17ZnCUsOr6vKrdn2rWsZni7p[/tex]则, 通过积分得[tex=32.571x8.929]qeiYnKXLEhyhuGRg8yLtr6L1GAbsFJw+bmgbw9tiTQJ2if1R3LU72sZJDu044v0+eZxfeRzeP08sWrSfpO6OcGLQnbemErrX1ZKzj5A1uXxBR6Bn/E/abfk8HO4xxEkyPWMZHxfDKMp6tPYyvBc6xZzSvXJmnW8O02uVnWjSTRyIgBSttI96LzF51keYluX3/R+UfIJdhgqtDjFrRl8aMaL0Nik0QyBCNeTZkACzXkA7P88qnVMuh8AnLjgNCW213EQGNXP8D4BLsqHjlxB7sA17U7WiZD9qnfp4AqDB/L/7gwUdTFsyYakEN9wMF+9LfMM+trwaGsCODqfjUHr7rQw05UWCQ5tKTvIqJzQubfgrt6VNfeFHaUisy2rua3k/hvzXRucvhT+ZvZRaE0/Y42gbwduG75vGE65tCvN1OapGhXyGhA4VakYGjdj4kKGSz0oksirCaSseAj8n6XW0DGCl3s5JfKGfvbVXK0E1fmytY8yns6BcWSi12RmO+hav+CXlpO0o8YUTdGhUC8HvFoEppT8oxd7WqyZait2QVUaHM1q7YsJ82Rzt4wK7dCOtxxHG3uiknqi9w5p0A+r8Bc7K7jcYiiZysKvmllZLpznhS6Kk4uY9ciT05imHtj2WE9qA46OyftLoiG/FDc9F+zQ+KkQSjoaFNSbaJ9Pj2w0g3PKzMsu2j3PlTSWiYfdKcIm6aPphk5yOdadWIs6rrPvEEm4zuQvpbwJoicdy2FZVjqW19WOeNNd25G5YRTuEusmHKWxd+BbKtSFVublEHbCqE8kXruAXIQoWBRONttJB/STvahY9WZKcVCxevFAJmhRUATBZbNtiMKh1lpFqEXcx7BiXZrLxb24vhmkFZGiSf1WwwQhShS9oTS+zM7dP[/tex]中心处 [tex=10.286x3.5]kpWQ6+6bXEpgmrp7skuUKMrtlbmf/beiSCUnasBvARLk+W34sZ6fjyOTgzBfqW22RVZeMKfoFJReS5lFB7erQAGwspGpQpp6PFGeRS4l4VU=[/tex], 两端[tex=11.5x2.714]wqpJGFOsrbxdavmpP6oiROzJ0/od7RuNSPma9Icon59rK2AvM2gx1xYPiSt12l6Mr0E8vzhLcbkX5nhNE62k7dFhnFYkHXc85SyeGjc8AHNGENmyQyHAB4Q9yCQm6HeV[/tex]当[tex=2.857x1.071]WBJ+9caa3/MEOm6qUiwKyg==[/tex]时, [tex=20.929x2.786]xrJHMiWSSv2MI3NvQnFcrkes2hFomPaE5h6Vx1AyKaAwSKZUkG7W3s5wf4UuzPhs2/lgqIXNU9gbC9KZyQZdIhL1MhU0nNxjZUt1DIix6ELc8KTsVKCoQV4M2ZLW7hJVsRDpt5b5NWjOEyPbYtb7g+C2ov3LCr4IynO/VVVLIkuGsEBQ3FTG/TSItSPKHEreipHIGWFdg2uYYm+u8IokMX1KVVb0eprmY+W0i7a/IQs=[/tex]

    举一反三

    内容

    • 0

      一均匀带电长直圆柱体,电荷体密度为[tex=0.571x1.0]wZfDAQ5tsV00QsfoitgWPw==[/tex],半径为[tex=1.071x1.214]fZpNPByg+T+FftapiviAXg==[/tex]如图所示.若圆柱绕其轴线匀速旋转;角速度的[tex=0.929x0.786]5njpLctHl0T1AS5I1KuhGA==[/tex]求:[img=466x114]17dcd92a87751d9.png[/img]圆柱体内距轴线[tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex]处的磁感应强度的大小.[br][/br]

    • 1

      在半径为 [tex=4.143x1.0]upx3bg7MRE3OMQrRoLWxXw==[/tex] 的无限长半圆柱形导体面中均匀地通有电流 [tex=3.286x1.0]ZqlisQx/h81dkn+NqFMUMA==[/tex] ,如图所示.求圆柱轴线上任一点的磁感应强度 [tex=1.571x1.0]sR3003RQGHxW9uLxCIgjMw==[/tex]?[img=184x242]17a866971e476b0.png[/img]

    • 2

      一个半径为[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]、载有电流[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]的圆形回路处于一恒定磁场[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]中,[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]垂直于回路平面,与电流满足右手螺旋关系若[tex=19.643x1.429]UDF/3+w436qg3KnXKuIg4ACGoeUt5eJgVWEJLjazdFxz9FBREEPy2DAuW59IiKhzuawycI5Oia3k8hPD0JJJ1lKHNY7XmKtPU9XCO1GN7ok=[/tex]计算张力的大小.

    • 3

      通有电流 [tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex] 的导线形状如图所示,图中 [tex=3.071x1.0]ck5Od4K0ZvdGsErD+mqR2Q==[/tex] 是边长为 [tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex] 的正方形.求圆心 [tex=0.786x1.0]YEkxBRWVe8SyiK/VG6WTCQ==[/tex] 处的磁感应强度 [tex=1.571x1.0]sR3003RQGHxW9uLxCIgjMw==[/tex]?[img=237x226]17a86586296972a.png[/img]

    • 4

      一半径为[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的无限长半圆柱面导体,其上电流[tex=0.429x1.0]4WdbTpau1rRmginy2futhg==[/tex]均匀分布,轴线处有一无限长直导线,其上电流也为[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex],如图[tex=1.857x1.286]YJL5aPVQCd9fW3p0IAt0yg==[/tex]所示.试求轴线处导线单位长度所受的力.[img=248x203]17a7d00fe4a21c0.png[/img]