• 2022-07-26
    已知两函数 [tex=6.429x1.214]UhilWiHoVe8v56S3G+dFoeufxGsGZt8EvK3jEX7ympg=[/tex] 为一个二阶线性齐次微分方程的两个线性无关的解,试求这一方程. 
  • 设所求方程为 [tex=10.643x1.286]Ei2PZQl92La73hUrygebcwwx2L/XGCOrtkx0hwIK+JXYJjQ+dviJUKbfxX23D3WC[/tex] , 下求 [tex=4.643x1.357]AuPTQqpJbGJE3NYNc2sJfg==[/tex], 显然 [tex=2.214x1.0]88schavGDEyAK1Rm//Nu6w==[/tex], [tex=3.786x1.214]3EICFFiJIkwa+rz7gzk5/g==[/tex] 线性无关 (因 [tex=10.0x1.286]htbsiJWhnZINZONr+YJub67W5Bsa7zWpm87RjY470ECEO1NBBG3JC6Hk/N8l80Hl[/tex] ) , 可知[tex=26.071x2.786]pQKdFycKF9XBtvaYiwYIYfO4KncptdLj8W5lihnsgUeedBUPiUCNmwsR8vy18gOtbiRNV5vz4eabI/bWZ7BDkRi4kACkX7ImPkiDv+c2N/UCObS8+nOC55UhHR+lCV969Tt9MwfUDDIazR4PBf1Iy6XMLy9m9mvW5em0mqd6mfaektkXg0pW8yL6rOdt92D2Sm5YuqJAaWCYP1iq1NNz59RDjZaAUEfszmv1R7v9JCyDbNqyUmdY6JPvPYttYTBOhuvCxQ80nhLP1Cl0Co3Ma6/tGD1AK8Ry1M0ueI9MiWzl1b3u2EbMuNsueC/9C4+v[/tex]将特解 [tex=2.143x1.0]uo6/zWu331LxZEEmhcRPAQ==[/tex] 及其导数分别代入 [tex=10.643x1.286]Ei2PZQl92La73hUrygebcwwx2L/XGCOrtkx0hwIK+JXYJjQ+dviJUKbfxX23D3WC[/tex] 式, 得到[tex=16.5x3.357]GE56u9QCDTqcLxZ66HADypLd7eGlBaWduBdJuRU+ouKyiAApS3EojUX+SxxK3VSN4vDIglEospYD351qrCbEO8aXAqwILvu4ocPh8BsyZJKSaltY18zTzSaJJJZYs4v0yUiFO2LkYd5kyziFM9dqJYfAMoPkQ4jrFItf/IKixSI=[/tex]由 ① 式知, ② 式的系数行列式不等于零,因而 ② 式有唯一解,解之得[tex=25.286x5.929]qeiYnKXLEhyhuGRg8yLtr9M9I0dQu7gtBhAsMk2xjrVKxcxlFsvq3BFGK50SKZyzQuwE6WEdl+N/r0rcYbQtDn3Qrj5BlqiojDrOw3X7/QL5FhDTgYTe6hP0RKeEtIFaWw4euqDIsBBaPNVJPmVWEaTwVypTOM7re881GgKuOxC8RXJkImes+VfohaG44PPH6ZBrXKoexuqHJ2KYpty72w3XNz2k5o2Y0xM9LGGspaP+SwMuEGDihOBkV0W5jNRtwnp1Qc8urCc3hDxgUUWzjVGRQFUrODRjpb8g2diL9RJ89316z/hdYqPcvVP53rS5PKuqrGvnr6oOQtEQZ/iJXG5/XW2/Fw3sqXHQ0gLFqbmhSLD5OxPNYsAKcydfs6b/ze9oFDPj3qfMBf5Qq5zeI3mzPmAtzQt49T5lJcDfLA6jBuTMmGw20lr941/nWRdqimi9yDPbGTu9FQzqe5OG2Xze7O1xPkRc/DJfXO3sXNsDG5prNZy0fKuOd9JN4ty7Q0bIZPGM8KeAVblEXmNyBpLQnzoufgUNO3eMaZFyPvY=[/tex]于是所求方程[tex=18.571x2.0]Ei2PZQl92La73hUrygebc8sAZAqTBM4rgKfholCVRiQCLd1bK+VhZ4BHjCm1OKYT5keRpyAGGPfKEejct0HZz0ZEoxyP82TdLeN8m10EzObTP1tJZ3kmyciBkQD/Ne2WlY/bngDfNA3/zPl12QSSFg==[/tex] .

    内容

    • 0

      如果是齐次方程的n个线性无关解,则是非齐次高阶线性微分方程的通解

    • 1

      n阶线性常系数齐次方程的特征方程一定存在n个线性无关解。

    • 2

      已知 [tex=7.429x1.357]Rgd7FXiW1lMYYmWpwA97I7dtiXVqittP03TsBr9vEo8=[/tex] 是一个二阶齐次线性方程的两解,试建立此微分方程. 

    • 3

      求下列二阶线性常系数齐次方程的解:[p=align:center][tex=8.0x1.357]2zBbUOo3bhePzpMRrvNCs7gSdfVUs98Vol+ApOigTiBvYFOdYFrzmwDZUzRK47kp[/tex]

    • 4

      已知线性常系数齐次方程的特征根,试写出相应的阶数最低的微分方程[tex=6.214x1.214]+4Nf328hDjxLHsRWnG35lT5g66goTPr4WS8FbfIBDWk=[/tex]