.如图所示,有一只蚂蚁在正方体某条棱的A处,它想尽快地游览完正方体的各个面,然后回到A处,如果正方体的棱长为10cm,则这只蚂蚁通过的最短路程为( )。
A: 55cm
B: 30 cm
C: 120cm
D: 42 cm
A: 55cm
B: 30 cm
C: 120cm
D: 42 cm
举一反三
- 3维正方体有8个顶点,12条棱,6个面.若棱长为a,它的体积[tex=2.929x1.429]lvLbO+dQKnChgEkVM0tdaQ==[/tex],面积[tex=3.5x1.429]VInkLAAfbnR8TgpNmtToIw==[/tex]为了一.致,可将2维空间的正方形规范地称作2维空间的正方“体”,原正方形的边成为这个正方“体”的“面”,“面”与棱重合.2维.空间正方“体”有4个顶点,4条棱,4个“面”.若棱长为a,它的“体积[tex=2.929x1.429]EjNXqC1URGjz4BBmLyGbhw==[/tex]"面积[tex=3.071x1.214]eJQDaPaqcljJKHxXKcUrXA==[/tex]同样,1维空间的- -条线段可称作1维空间的正方“体”,则“体”与梭重合,原线段的顶点成为这个正方“体”的“面”,即“面”与顶点重合.1维空间正方“体”有2个顶点,1条棱,2个“面”.若棱长为a,它的“体积[tex=3.0x1.429]gnvAfGgYld3BZyCk9VETmw==[/tex]面积[tex=2.571x1.214]9Y6jFk0SvZ7bN0z2WiPpyg==[/tex]对k维空间正方体,用递归方法求出它的顶点数、棱数和面数;若棱长为a,求它的体积[tex=1.0x1.214]PQtKs/Jji+Up7UH1owU3MQ==[/tex]和面积[tex=1.0x1.214]NI+R27zscgTK7aPLKyu1OA==[/tex]
- 3维正方体有8个顶点,12条棱,6个面.若棱长为a,它的体积[tex=2.929x1.429]lvLbO+dQKnChgEkVM0tdaQ==[/tex],面积[tex=3.5x1.429]VInkLAAfbnR8TgpNmtToIw==[/tex]为了一.致,可将2维空间的正方形规范地称作2维空间的正方“体”,原正方形的边成为这个正方“体”的“面”,“面”与棱重合.2维.空间正方“体”有4个顶点,4条棱,4个“面”.若棱长为a,它的“体积[tex=2.929x1.429]EjNXqC1URGjz4BBmLyGbhw==[/tex]"面积[tex=3.071x1.214]eJQDaPaqcljJKHxXKcUrXA==[/tex]同样,1维空间的- -条线段可称作1维空间的正方“体”,则“体”与梭重合,原线段的顶点成为这个正方“体”的“面”,即“面”与顶点重合.1维空间正方“体”有2个顶点,1条棱,2个“面”.若棱长为a,它的“体积[tex=3.0x1.429]gnvAfGgYld3BZyCk9VETmw==[/tex]面积[tex=2.571x1.214]9Y6jFk0SvZ7bN0z2WiPpyg==[/tex]从度量的角度分析,为什么数学上给出[tex=2.571x1.214]9Y6jFk0SvZ7bN0z2WiPpyg==[/tex]?
- 如图,圆柱的底面半径为3cm,高为4πcm,一只蚂蚁从A点沿着圆柱的侧面爬行到与点A相对的B点,则最短路线长为( ) A: (6+4π)cm B: 29+π2cm C: 7πcm D: 5πcm
- 小红做了个棱长为5cm的正方体盒子,小明说:“我做的盒子的体积比你的大218cm<sup>3</sup>.”则小明的盒子的棱长为____cm。
- 一只蚂蚁在圆形花盆沿上爬行,一人站在A处观察,开始蚂蚁处于B位置,过了一分钟蚂蚁由原先的B处运动到了C处(逆时针),已知花盆的直径AB=50cm,观察者从A处测得∠BAC=30°,则蚂蚁爬行了______cm,BC=______cm(π取3.14,精确到百分位).