• 2022-07-26
    以下方程不属于齐次方程类型的是( )
    A: $\left(1+e^{-\frac{x}{y}}\right)y\text{d}x+(y-x)\text{d}y=0$
    B: $x\left(\ln
    x-\ln y\right) \text{d}x-y\text{d}y=0$
    C: $x
    \dfrac{\text{d}y}{\text{d}x}-y+\sqrt{x^2-y^2}=0$
    D: $\dfrac{\text{d}y}{\text{d}x}=\dfrac{1+y^2}{xy+x^3y}$
  • D

    举一反三

    内容

    • 0

      函数$z=\arcsin\dfrac{1}{~\sqrt{x+y}~}$的定义域为( ) A: $\left\{(x,y)\left|~x+y\geq<br/>0\right.\right\}$; B: $\left\{(x,y)\left|~x+y\geq<br/>1~\text{或}~x+y\leq<br/>-1 \right.\right\}$; C: $\left\{(x,y)\left|~x+y\geq<br/>1\right.\right\}$; D: $\left\{(x,y)\left|~x+y\geq<br/>\dfrac{4}{~\pi^2~}\right.\right\}$.

    • 1

      下列函数中( )不是方程\( y' + xy = 0 \)的解。 A: \( y = {e^{ - { { {x^2}} \over 2}}} \) B: \( \ln \left| y \right| = - { { {x^2}} \over 2} \) C: \( y = {e^{ - { { {x^2}} \over 2}}} + 2 \) D: \( \ln \left| y \right| = - { { {x^2}} \over 2} +2\)

    • 2

      下列微分方程中,( )是齐次方程。 A: \( xy' = y(\ln y - \ln x) \) B: \( xy' + {y \over x} - x = 0 \) C: \( y' + {y \over x} = {1 \over { { x^2}}} \) D: \( y - y' = 1 + xy' \)

    • 3

      方程\(\left( {1 - {x^2}} \right)y - xy' = 0\)的通解是( )。 A: \(y = C\sqrt {1 - {x^2}} \) B: \(y = - {1 \over 2}{x^3} + Cx\) C: \(y = {C \over {\sqrt {1 - {x^2}} }}\) D: \(y = Cx{e^{ - {1 \over 2}{x^2}}}\)

    • 4

      函数$f(x,y)={{\text{e}}^{-x}}\ln (1+y)$在点$(0,0)$处2次Taylor多项式为 A: $y+\frac{1}{2}(-2xy-{{y}^{2}})$ B: $y+\frac{1}{2}(-2xy+{{y}^{2}})$ C: $y+\frac{1}{2}(2xy-{{y}^{2}})$ D: $y+\frac{1}{2}(-xy-{{y}^{2}})$