f=x^2+2x+3,g=x+3的结式?()
举一反三
- 设$f(x)=x^3$,则$f'(x+3)=3x^2$。
- 4x/(x²+x+3)+5x/(x²-5x+3)=-3/2
- F[x]中,若f(x)g(x)=2,则f(x^2)g(x^2)=()。 A: 0 B: 1 C: 2 D: 3
- 求方程组的解,取初值为(1,1,1)。[img=250x164]180333307ab8fde.jpg[/img] A: f=@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3];x=fsolve(f,[1,1,1],optimset('Display','off')) B: x=fsolve(@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3],[1,1,1]) C: f=@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3];x=fzero(f,[1,1,1]) D: x=fzero(@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3],[1,1,1])
- 求下列函数的值域:(1)y=(x^2+2x+3)/x^2;(2)y=(x^2-3x+4)/x;(3)y=3x/(2x^2-1),x∈[2,4]