举一反三
- 设3阶矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的特征值为-2, -1, 3,矩阵[tex=6.786x1.357]5sQBSCH1+oEoQda8DcapHw==[/tex],求矩阵[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]的行列式[tex=1.357x1.357]JRr5OoiiAPF9KB2ukKJtuw==[/tex]
- 设矩阵[tex=6.214x2.786]3BT1BgBZQ5uJXxD5dg+w25QkjUrzidmbubqo1ddzSb9e7f3fYsTV1G+40UUncXBTYrIkkumXzUOMO/VRUf85Dw==[/tex],[tex=0.786x1.0]fwQExLcEMNi4KL1eGzaYww==[/tex]为 2 阶单位矩阵,矩阵[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]满足[tex=5.071x1.143]U/VLnbmYJrvg3ZxxAkqUgw==[/tex],则 [tex=2.143x1.357]i1Dl2S0YpOiWYjllbdTyqw==[/tex][input=type:blank,size:4][/input].
- 已知3阶矩阵A与3维列向量 x 满足[tex=6.857x1.357]zd0nq0IiNsY0hFTyLJHQy4eC+A8zUY14VqChcVve0aM=[/tex],且向量组[tex=0.714x0.786]Qp78QkdFrqytlOsANWrP9w==[/tex],[tex=3.5x1.429]c2YtesCJSYo0KOSy0rMECg==[/tex] (1)记[tex=10.643x1.357]3tyZrBE07WCx0ZFK2Y3aVjbjYUrJ/5Q0lIjkUE1dgc8=[/tex],求三阶矩阵B,使AP= PB;(2)求[tex=1.357x1.357]0awZUhfhOcjHk6LSkdT6Gw==[/tex]
- 已知[tex=1.786x1.214]IENxQEh5u4RdnCaqHm72Xg==[/tex]为3阶矩阵,且[tex=6.5x1.357]Xw38Dcvrbs7IEKOZRvkd5g==[/tex],其中[tex=0.786x1.0]XvHgf70VtK2FH5G93l0k3g==[/tex]是3阶单位矩阵.(1)证明:矩阵[tex=2.786x1.143]RcZ2ZRIlzxNTbD8lUHAX+Q==[/tex]可逆;(2)若[tex=7.786x3.5]DgXZT9CtCPAglTYwc4pEdVwGPrEvfplbNSz07f1CHm3lKZFzRkIi88nqRWCa7cdxtDn1Uq6Au4bDH+3NSK9+pGWuIrunnKgMXUiXxap7tYqS5e4P0ZLrWW76zZyDl/um[/tex],求矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]
- 已知 3 阶矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 与 3 维列向量 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 满足 [tex=6.857x1.357]Lw7MY+vHiOJju+aMmJosSf4Q+w2eLqeFWXwpoQ9dXvI=[/tex],且向量组 [tex=4.5x1.429]vem1xqfqZOrWU+JHf+8HvdhAgrXD23Plvxbo91uzfU0=[/tex] 线性无关. (1)记 [tex=10.643x1.357]AnYXKFDyPsTPeDyomY8dmRFR4J2CsEpO1CX2CbnqeD8MXUw/OcNFDAeFlcb/6gsH[/tex],求 3 阶矩阵 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex],使 [tex=3.571x1.0]4xPdkWplQbj/Ow7K5IaMcA==[/tex];(2)求 [tex=1.357x1.357]dF7dp+ABMXt2bMwvh7dh+w==[/tex] .
内容
- 0
设 3 阶实对称矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的特征值是[tex=0.5x1.0]AYXQx0BMtpSPsr4BfOe2YQ==[/tex],[tex=0.5x1.0]8C7DKsr6nhrfCdsmGxO88g==[/tex],[tex=0.5x1.0]/BQKP5E8YnupUQ2sDg7w1Q==[/tex]。矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]属于特征值[tex=0.5x1.0]AYXQx0BMtpSPsr4BfOe2YQ==[/tex],[tex=0.5x1.0]8C7DKsr6nhrfCdsmGxO88g==[/tex]的特征向量分别是[tex=6.429x1.429]byqQGNzmk3rn5PDy8xu2bJfsHCRTMgFMnGrrZ7X5JxKHs4gVKR6BdN31NZz2HvVX[/tex],[tex=6.429x1.429]5jkLjn+YJPdL+AxBb7dksQnKoiSB4WWTg6LTWWhVQEM=[/tex]求[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]属于特征值 3 的特征向量
- 1
已知三阶矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的特征值为 1,-1,2,设矩阵[tex=5.143x1.357]GXZk0g8n9F5fV4GyCGm9mygQSr4Yd8XrtrSrBIW9ziE=[/tex] .(1) 试求矩阵[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]的特征值; (2) 问矩阵[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]是否可以对角化,说明理由,如果[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]可以对角化,指出与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]相似的对角矩阵.
- 2
已知 [tex=2.071x1.286]Lw1m7LuL1SjurX1WRZuPUg==[/tex] 为3阶矩阵,且满足 [tex=7.714x1.286]ThWWPhndKkz3UClWdkawSBreeT7S5i5PvnTbUSWKYOOv9U2rV7yWwLvdAXkYzsfH[/tex],其中 [tex=0.786x1.286]KdMX/vrMoFuyctoWaUWH8w==[/tex] 是3阶单位矩阵。(I) 证明:矩阵 [tex=3.286x1.286]7/dUziihQFEuopQUmAB3jtRjn7Bmun7c4UQbytj87b8=[/tex] 可逆;(II) 若 [tex=7.571x4.786]174MZEe/izWSafpCRvJbd3cQKHCzrrjGGKpSfjzsHHVXpVP4uwNKwm6JKWYSK3g5xlXwIaRNk+2zOOmSaTeVcClZXyEuVtudF/ZEztSsKpA=[/tex],求矩阵 [tex=0.857x1.286]BQkHOimMmPUuGqQUunHC8A==[/tex]。(本题满分6分)
- 3
设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是 3 阶方阵,交换[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的第 1 列和第 3 列得到矩阵[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex], 再把[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]的第 1 列乘以非零数[tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex]加到[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]的第 2 列得到矩阵[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex],求满足[tex=3.071x1.214]3+M19Dh1e/7vmqEyIJFlPw==[/tex]的可逆方阵[tex=0.857x1.214]9OmWE7W041bnoZ/iD5egYg==[/tex].
- 4
设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]为3阶矩阵,满足[tex=14.214x1.357]jZXpielExdVq250XLqu7h6LuoRAFq0f0w0Z1fVS42B0=[/tex],求[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的特征值