设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个元素的有限集,假设[tex=7.071x1.0]kngJEsO/B1OXyxIIqTlDhvSfQiD1fqeFBhCCdkdF+t0QAIVCz9GY3xnSPQeDiJMX[/tex]是[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]上划分序列,使[tex=1.714x1.0]E2Jl9tVQS99pyroZxUEzuQ==[/tex]真细分[tex=0.857x1.0]m8qW0g+mLApu062UqPIJ4A==[/tex],找出最大可能的序列长度。
举一反三
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是一个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级矩阵,证明: 1) [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是反对称矩阵当且仅当对任一[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]维向量[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex],有[tex=4.0x1.143]rLVONmXxLnhl8YaM4UacI9oY4xHCd5UxvQ2cXFY3Iyc=[/tex]; 2) 如果[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是对称矩阵,且对任一个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]维向量[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] ,有[tex=4.0x1.143]rLVONmXxLnhl8YaM4UacI9oY4xHCd5UxvQ2cXFY3Iyc=[/tex],那么[tex=2.071x1.0]P1sZi5Sh6qXV+PX80otJJg==[/tex].
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个元素的集合,证明[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]上有[tex=1.286x1.286]u1nM3EZnuokSWMik0n0yiw==[/tex]个二元关系。
- 假设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个元素的有限集合[tex=2.857x1.357]qGjJijalUzfuDBn4hCNz5A==[/tex],问有多少个元素在[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]上的最大等价关系中?
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个元素的集合, [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]上有多少个三元关系呢?
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是一个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级正交矩阵,证明:如果[tex=2.643x1.357]xnNlsIp2wAAq+OkAnU/oIQ==[/tex],且[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是奇数,那么1是[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的一个特征值。