• 2022-06-26
    设 [tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex] 是线性空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 到 [tex=0.714x1.0]X6uqj1A7AQmRFBpFsTbZTg==[/tex] 的线性映射, 则必存在 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 和 [tex=0.714x1.0]X6uqj1A7AQmRFBpFsTbZTg==[/tex] 的两组基, 使线性映射 [tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex] 在两组基下的表示矩阵为 [tex=5.5x2.786]jcCMHflCR8OS9TosV6N5vOGsz4lMsaik2WCvgDGOBAocIVyOBfqUzesJTrjK6zZ+d35oA8cH1C8Ci4UbJlvD8Q==[/tex]
  • 证明 由上题及矩阵相抵标准型知道, 可选择适当的 [tex=0.643x1.0]WUJ/JHItsc3Bqx1WYNJcrg==[/tex] 和 [tex=0.857x1.214]to/MrMoO1ux8UhZHnpEvBg==[/tex], 使[tex=9.071x2.786]QrBCHqn7Vab3rY05j2LU6aOXXh+9F+UkabOsDBK0uYN6AzxMmSq/VYw5lWjcXFL/tJIgILCoZObWST1g0z5QO8Z5PIWo8KyUrtDI8i1l+dU=[/tex] 由此即得结论.

    举一反三

    内容

    • 0

      设 [tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 维向量空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 上的非零线性变换, 已知 [tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex] 不是可逆变换. 下面条件能保证 [tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex] 的 核空间与像空间之交为零的是 未知类型:{'options': ['[tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex]\xa0在\xa0[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]\xa0的某组基下的表示矩阵\xa0[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0适合\xa0[tex=2.786x1.0]KPihQJj4ZZU9JEE9t5X/Uw==[/tex]', '[tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex]\xa0在\xa0[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]\xa0的某组基下的表示矩阵\xa0[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0适合\xa0[tex=2.714x1.214]+yxb2fEUuHYxLwX2MLViFg==[/tex]', '[tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex]\xa0的核空间维数与它的像空间维数相等', '[tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex]\xa0的核空间维数与它的像空间维数之和等于\xa0[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]'], 'type': 102}

    • 1

      设 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 维向量空间, [tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex] 和 [tex=0.714x1.214]hEHZwhVlHPnf9D4udzi0EA==[/tex] 是 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 上的线性变换, 则它们的像空间维数相同的充要条件是  未知类型:{'options': ['[tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex]\xa0和\xa0[tex=0.714x1.214]hEHZwhVlHPnf9D4udzi0EA==[/tex]\xa0都是可逆变换', '[tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex]\xa0和\xa0[tex=0.714x1.214]hEHZwhVlHPnf9D4udzi0EA==[/tex]\xa0的核空间相同', '[tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex]\xa0和\xa0[tex=0.714x1.214]hEHZwhVlHPnf9D4udzi0EA==[/tex]\xa0的像空间相同', '[tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex]\xa0和\xa0[tex=0.714x1.214]hEHZwhVlHPnf9D4udzi0EA==[/tex]\xa0在任一组基下的表示矩阵的秩相同'], 'type': 102}

    • 2

      设 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 维内积空间, [tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex] 是 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 上的线性变换, 求证: [tex=7.429x1.5]Hxr+WAd0pdX8wRxoSXYGR3do9fEtDlh1/HAxD3DUXhGMjAefuLUvVoRdEHJyjLhXFlycXQ3p2whuN5XqXwrP+wAqj43ADjVBq9YjRHMLZEY=[/tex]

    • 3

      设 [tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 维线性空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]上的线性变换. 若 [tex=5.857x1.571]dlZn1WdSEhJnaQfjAzNay4TIfH54naq98zpD0G+3eAkJyYIeoNhzJVa9bCG6MTbl[/tex], 求证:[tex=7.643x1.214]iIotIX85I058AY0uMJSgutb/w8njTH7pkPuwY+U+zsSq9GX9CZ5GdUR1DP9/bnrfyL43/k2euqbFlcouGaGC1fWgQxGgvK0rtaRkzWb+Kxc=[/tex]

    • 4

      设 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 维向量空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 有一组基, 这组基的每个基向量生成的子空间都是 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 上线性变换 [tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex] 的不变子空间, 则 [tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex] 在这组基下的矩阵 A: 必是可逆矩阵 B: 必是上三角矩阵但不一定是对角矩阵 C: 必是下三角矩阵但不一定是对角矩阵 D: ​必是对角矩阵