假设总体X在区间[tex=2.0x1.357]bFKRddNfeyr8No3kDXw5Ig==[/tex] 上服从均匀分布,求来自总体[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]的简单随机样本[tex=7.286x1.357]CVnIHALKpREOmNiXwIbJmodNMZqTBoL48emjuXjwKc8K3HmVLqj2ud3G0BlQXFIX[/tex]的联合密度函数.
举一反三
- 设总体 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 服从以 [tex=3.929x1.357]W3n0MuC6lXebTnf9wa6UJ1I1+tAHUgOZxIDpLbHnOH0=[/tex] 为参数的指数分布, [tex=7.286x1.357]CVnIHALKpREOmNiXwIbJmodNMZqTBoL48emjuXjwKc8K3HmVLqj2ud3G0BlQXFIX[/tex] 为其一个样本,求该样本的样本密度.
- 假设随机变量[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]服从正态分布[tex=3.643x1.357]gZwBA2wziVkjKTXyux7+/g==[/tex] 由来自X的简单随机样本得样本方差[tex=1.214x1.429]6nvsk8XFocrVmOkVBbI3qg==[/tex] 求满足关系式[tex=7.714x1.357]oqFY6v6sSjvBdzAEdD/h2+TP+7YpkUnaQrOW1NfyvMME5C7Kf2PhPb6D9YQmH1JE[/tex]的最小样本容量[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex].
- 设随机变量 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 服从区间 [tex=2.929x1.286]U4gwwZFEB18kUXgjrLuA4A==[/tex] 上的均匀分布, 求 [tex=3.429x1.286]XAWy50XS6k3RkWIBg728/g==[/tex] 的密度函数.
- 设随机变量 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 的密度函数为 [tex=11.071x2.429]b0AejGK8cZqfdbG3Tux+udRW9Fp8cAkzLyQb1JEUbnV4/ZDO7AjHjsHn+NZy68TUpK/GwMftqSPDXUTx50aVrQ==[/tex], 求 (1) 常数 [tex=0.5x0.786]EL0hSqs6jZBGdsmH7TMShQ==[/tex] 的值;(2) [tex=7.857x2.786]YjcHvRQshYm9dgcyyroPhKMhp+fPT4ss3eOw+rSlE6+9ylk76knio7NwOyX8RGfv[/tex]; (3) [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 的分布函数 [tex=2.0x1.357]XiwLhO8FnROM2q2R1tcKSw==[/tex]
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 在区间 [tex=2.286x1.357]IVQHL7gpVvGMeTU2JgKtIg==[/tex] 上服从均匀分布,在 [tex=7.214x1.357]V+xkADBZ+6KY2QE3eRSKFA==[/tex] 的条件下,随机变量 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 在区间 [tex=2.357x1.357]MXPQWNi+zHHCEzuZBSyPtw==[/tex] 上服从均匀分布, 求:(1)随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 和 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 的联合密度函数;(2)[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 的边缘密度函数;(3)概率 [tex=5.5x1.357]pcLS3GdwGHaNP3Uhki575Q==[/tex]