• 2022-06-30
    用牛顿-莱布尼茨公式计算下列定积分:[tex=5.786x2.786]XuEw2J+Ow5ToAZnICsCCAutElUVMhBwJ/k7QbnvvVT8=[/tex]。
  • 解:因为[tex=4.286x1.143]NTKJxb4sPu53TmmNfb9Bb2yqhi+Jm/xG2jRm5Ftj9Js=[/tex](1)当[tex=2.214x1.143]/gDWvsF/LTQ9CNNdMlbuUg==[/tex]时,[tex=29.143x4.929]HImcpD5oH7HlUwvgLg3zhsnKrQrJQ8haEXeE22auv14Ckmjx6a2mPq//wsxMDePxMUkUZOkgamuTXmt1E83nwCyBgWedeBuJ/SZUVcRa2ByMjjKSVJDdfhRi5mUVh8vV3zAR7vS5TLQ4Z42t3PHXWAZDgUGnpLp4FgAcdXefKQZrpX1lORL3MxZv38Pt/W7ss9kJQbFn3++5w+BVDEhtnfUOPrzdNw4KudirEMtlDmKZ6XqIrm8TKq6LdDrggutvNwvPB/L0mkjWY+jfIyDPvfzGrGimFLINFtmfftdGyns=[/tex](2)当[tex=2.214x1.143]pkYGUQ3YM0n8iWA2DhckGw==[/tex]时,[tex=16.214x2.786]6DIGhAQN5wPIZqdDK3zZZ+JlqZkMJkaV6vDMrGDRpQ/I62UMrCcpzw4dHx2l4ylB/egI8LdUl4EJNi8vp+/ldPcsDEaMogBS7HBEFa+VP6aE1JvAMcnhRijBfYbXsZXY[/tex];(3)当[tex=4.071x1.071]/1UFl95oMw9yj6OSDJp6SA==[/tex]时,令[tex=3.571x1.357]29Sn0UkxffmjqFAo2TkmeA==[/tex],得被积函数分段的分界点[tex=1.714x0.929]dmmq/LJrVvLQrEXrMvE/Kg==[/tex],[tex=31.643x5.786]a0s3MH7cLIdmiBRR0YN069rBehhJZjYPhDdFotXzI2GNxy9dC1HU9TbKmxmC8q8hbHtkCqq491NCdOlkFX6QJAhUOc5FNwcfCwqrs8QdKUHLybh04h7SkJ//iUiEXta7QXBtvLtsX0vGY59CbErf0rceLGZpTvPOmSwgpwc6qLVmnaSqLMGRvmb2SN2TPHpob6vzFVQBcX9TjPHzwZB2WBsmWeJM/Ps7PbAE7JEQld1ASb+UrLcC+X2v9g3x/kW3GivbEg+Y9cuqDidrTUJeejfdQzZJ2+rf4axgFw5VmUwuDREFvJgn1kfy6EyKzfTuMsT6d9YXNQQ8AUOj0+UdQA==[/tex]

    内容

    • 0

      用牛顿 一 莱布尼兹公式计算下列定积分. [tex=6.429x2.857]pSPSO/Q9d6vfFI6Rl0vLf5LMmlxWlxsSz2hZVwfi9x0CEJOjeoEh27bF4/scYeeI[/tex]

    • 1

      用牛顿 一 莱布尼兹公式计算下列定积分.[tex=5.714x1.714]hHoUBIsArU/ajz3DRU7zGOHmOTYCmUjnwfxEy/wNdQm/sAJcbdat2ZeAFsdM7frW[/tex]

    • 2

      应用牛顿-莱布尼兹公式计算下列定积分:[tex=5.786x2.857]uBGT4Nt832AmQgX0Zp8/SiJc9YA0l0wPaSyXzs6BiHRmAiRo6xmECd9xTPAwxHOt[/tex]

    • 3

      应用牛顿-莱布尼兹公式计算下列定积分:[tex=7.786x2.786]s1b1uUpHFXk78mxB3L2JgFSMKI/36Nxge8EKQgCWw1+ojQswqA4v27lyp6Laxp1g3aS6zVjE5T9wZsUk+Vpp+A==[/tex]

    • 4

      利用换元积分法和分部积分法计算下列各定积分:[tex=5.786x2.786]VayJAJ4dPoPvWvsG3JDU0sWkl3GHQmo3AMU292HAp51DQVK0Rin1CTx7GfSYpAm2[/tex]