解 二次型的实对称矩阵为[tex=8.714x3.643]ZeXmt4Og2leBNgS2vOaZDZQB0nbvJlMfG2deoKsgvS3eeJLlHPUJ+M9YuOi6/JL7IKzAXISpluj4dYIzsi6dIPPX6aWg1kbIupft7wJR3h2T/etp+dqor5GtzE2WHxOs[/tex],它的特征多项式[tex=10.5x1.5]eKVv3rk9ad1jsnkGbKi0/o5wDA0pghzQQg5FT7++QxjGcUGj4q4UH1Y7RM3kgVdzhpfPUGhnA2X0tMa1hvQE8lA6Cuw0vbWwqjBs8vrPATs=[/tex],令[tex=10.5x1.5]eKVv3rk9ad1jsnkGbKi0/o5wDA0pghzQQg5FT7++QxjGcUGj4q4UH1Y7RM3kgVdzhpfPUGhnA2X0tMa1hvQE8lA6Cuw0vbWwqjBs8vrPATs=[/tex]=0,得特征值为[tex=7.357x1.214]ivSYNMaVYYeaWJN9eyIBl6iobwpB3eaG1RhcXjUAx/d6EGoi/Trh4ywhoGefGUZa[/tex]对于特征值[tex=3.0x1.214]5cmdprbsT0V+WECJvx0BPw==[/tex],可求得特征向量[tex=4.5x1.5]WFk/icAeVIVYD0y1SO/Av7n2SDUks9D/vn45+CHXWnk=[/tex],单位化得[tex=8.286x3.0]5VjJuQGokNeLNg5WjxVqKF6Ok053Qt3SqHTtgoB5P/QnoduJ+u5cfwHLHocRkwkFAvNi0/Jv/B4kPx/qLbrlqTLDVE1JmZAtV68J+lgnxSY=[/tex]对于特征值[tex=3.929x1.214]luD31XSS5Ysp75cOxMxBKYhNG+bI2bgAJG8dbMHUfbM=[/tex],求得两个线性无关的特征向量[tex=8.643x1.5]BZ6O7XnXN7h6yVQm2c80KuPnaM3bdh+oPoGYvuN27c/nI0itiEIrjM/nUeuDS8f8[/tex];再用Schmidt正交化方法,得两个单位正交的特征向量,即[tex=20.5x3.0]mUi01R7sq93DL3KP8rdZxuztTxuK925R3zp+2PJkHbDAG0QJthTJCyvULT0vqHQrqfX20+Pmp48yG1BJbEjTt1oscV9R4iDTKOUOEsguaGyQKYKo6kZEZTHtfE+in+gebNH+0WSNOjbV4/ez5/1HG2VtTuz1iY1wzOK7TAunyPVRc4XK/CjRvoJ0zcbv//q0SJBCVO5mgTcTQ3h8vKwvDl2+CupqeD10dPubDfaWp24=[/tex]取正交矩阵[tex=18.714x8.357]QsHopdtPV/VFGLoQGF/z4t0OOtFTPG1qRnqkbX4vqsENAFuVeTanUgkp/s3+N3+Be9BZf1XG9KX9kcQ4PqcaKXKhi028uLWC+WndzvvwzE6qTtVCy2vDJx/jbWpH1+30KOcOxI5XsZK1l+Kiv2kG5RsIStgFB0r1q2DRcfSEOHwmspF5uimCeac+8lyb37ZyaBQ6bJMBc9ZX8a7gu+kxbetfI/N5Ncrcva2qzj1zBRj1pvNffG0Zq77sD6b7SL1dG/3crJl/nYoeUjs80TXGYpxaWJfW2SFKAa3ApuhrjROpScRs7nTobtRYMkBfgDaEM/MhyjtO5/uPXxtnHmsuc/MN+l6mPsjOhPzzgm5kxIfQ26XN6PnRcNT/imv4D6AfS1ye2m+xlRPW7CytT3gmQ/y/IF/EKNqn/H3DbCLc2AU=[/tex],则有[tex=10.071x1.5]Ss3or4LxAW3V+tAJTAjoWPepekwr6s9oocmLkeqRLoqxGxa1pDje6flJmfl04jpqIIHom1ItJ38a4vvvZnYJBd0Dh3fPf5FzI/wyjryT0K3v9XDTLi/XZASPPbb66eRc[/tex]对二次型[tex=6.357x1.5]Z/o8hJa7KzeqcAJzwcCPQItfvrlqGCDcJ5mt/+j+/zj3i8QLc51zl6iaJFEfBzJ0PDEl6RIoQ1ZwgUpLHNn8w1l+ZFB4Pyk4HAc4jsffV1M=[/tex]作正交变换[tex=3.429x1.214]oknZ66ynAod60rOemxlhWxq5XaSNoSsIqACDF7PQBiE=[/tex],得[tex=16.571x1.571]Z/o8hJa7KzeqcAJzwcCPQJn+aHSn/3WTxFCQKk0SSYvilHEVsF/NFi0HNsyZjV3SZQk259E7a/lKAUTFvsySpi8TVSrnY9cj6FY9nhu+/epNmQhtErTBy5dE9fAC2yHNR6x5/YB0gJsEvK2WPvmL+49eOtJ3EUWHvHma4Q1J3Z7BDyff2K6QyoWLNgwWXROpncFzXtntcw3mZqLDxBSSIhT/PVYOKQiyW7UF+Am4jI0=[/tex]相应地,条件[tex=9.786x1.5]h6V/aQkay16fgIskPypzGOhA+WRng9c4BmPFKQVf/xn5WrhITF5JuMHNpEam7PsPvj/nNSc21e41dl2zoFyYHgTbNURlD5F7R/eSJ1G80J4=[/tex]可化为[tex=14.143x1.5]99ZFMRoH21kkvqpR6Rq64aJEZBwNulBVI9qBCLoygsCbdVJotdH87ArDjA+Gi8CAJFPYHNSJNq+AlX8L8D/viw5zZKAbsw3lJE2UJRqBtRNToutcHYhW5S3ZOqieAwk85edFcsx6OQeSdLyUptFGELXOEOS3prTCK1ang1rricmL3lSFypp+nm23GaDSgJp/vdSz+OYZ4U1zFTM+QM/6MsBtsCgFGUOeCe5wNmxeICQ=[/tex]于是原题可化为对(1)式得三元二次奇次函数在满足条件(2)时求其最小值此时,显然有[tex=20.571x1.571]Z/o8hJa7KzeqcAJzwcCPQBBBDA0n4nSLCAdPFchPS/xS9ocAwfCe3joiNANyzDlqC7Ye9vaGyhG7n8Ct3mCkzczk7xmoUuXyl/16dMKmn4Y+aqYfeZbgLSlZ7kBXCpizFivEEIhk4n37THf/StPlLg==[/tex]又当[tex=11.714x1.571]eqyVB89ZwtCzFu7WAl9+jAmtDR/XVa0kMo2ERPmjBsDyT4dGaZOHWCpN5ymKgHGGJQcB+b2/IAg6ldTT5TpiQ4NAWM4VAHMnXYB2SntkwK0=[/tex]时[tex=2.571x1.214]qYAkBVQFeefDlO4yGatuFA==[/tex],所以[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]满足条件(2)的最小值[tex=3.857x1.214]uepBCakkOdN8xEGg1h1tow==[/tex],而且它仅在[tex=5.571x1.5]hYGxNzBBBuBP6FtZSjdF27DzBsq6R/+T91DwgI8wDww7yk8mLe8d/xxBugtT/U6R[/tex]和[tex=6.357x1.5]hYGxNzBBBuBP6FtZSjdF28Gh9Tyu1U0TUCdoADlfsFN1X8wPHg5HY8YZJ+H2ikbL[/tex]处取得最小值回到变元[tex=6.929x1.571]+2Hyrq6ox90t7289xt4t0HTvgtJhS1NyVAmR3IWQQU0qM8Es8MnRR6+SfVkJ81FNj4YBnbhoa6Z4gy7U+ZcBZg==[/tex],则[tex=5.143x1.357]laEzR1IUAbB3F6co2ymLhc4Tm5xpwYK3+nsgsnQcCAt4GXCHXi9L45tyw5UKUJ7F[/tex]在[tex=15.643x3.0]ZL4OSwbgka8hhT6CpJpo0Ud3qg+XZ1XwE4uH0bqybId/ivfgFozTcTNxRp6GDAn3FfkKYMES2m8pAQn56grQdx3hQKrN4rCE6y6aoibDw6fAMnYWLNm0DbZgGuPgjdNto4J8LlylcG1h9sltu7/pDMw+PcosFK84+IsGLTQJ3ubsML8LoJ1LCK27klgpmmVo[/tex]和[tex=16.357x3.0]r1ZJ8Vv8Q9M+BMjIURe9P+k3bMQDWomOCf2t/X0lrkLVtBEhaiCe32UpkNOaaiN1UjLfQlOC0OarybYeqUMEkZ4Qr4pohaUO3mRPGsZZ+jYnkPJTJrk0G6bwSGBXbSt3Qwia0Cj3Ota242tf3TRt6+lLYhm+6dUqcgisIeHLpv4=[/tex]处取得最小值。