• 2022-06-30
    当[tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex]为何值时,反常积分[tex=5.857x3.429]PJkWCDHq0HBl1uIZQZIQaCJeYEBINEa3r1jVRLOCV3RAYxRTzznIBmThvoc5BKDWEufXbmYTxx3twNmSd5TmhQ==[/tex]收敛? 当[tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex]为何值时,这反常积分发散?当[tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex]为何值时,这反常积分取得最小值?
  • 解[tex=17.714x3.429]JZuVBCwppZxTnPTOZLO0RStZZOZDE6qhi+bNyDGUXJth4n/DHr7VczxKCObfcPTRACgZFgbgni/ot+y3mNplsYFF8n8ApdTcBVN7mjXvd2THU/J6OCx0Sfc/P0oTzHec9Ka9c0qMVfyxv4SS8j4Ttn6u7QtFRt6Ld3trLpYXo48f9KtEACLgMK2hQBfY5HGVO3XSWWh9s0uOhmwZUmCdOA==[/tex]故当[tex=2.357x1.071]iILyBi8jdCgmaZqoi7cqWw==[/tex]时,这反常积分收敛,当[tex=1.857x1.143]LDGxA08gmjijP8BSSRq3MA==[/tex]时,这反常积分发散.当 [tex=1.857x1.143]LDGxA08gmjijP8BSSRq3MA==[/tex]时,设[tex=6.071x3.286]cSthURZGcf2hEpcelqsapEpu1lpzntSsrlc7GUbMu30JdzIAs6coritHx4gw8gaG[/tex],则[tex=18.929x4.071]vbVXy+dU2WItRw01zqBc1ObBah5qYet0p5vT2wVjRm3F7TmB6UEEI8eMFm06aBJlvsC49B7Q7mrd5Y8RPLhmmXKL+/yBUIzKxsizRRYVW5ONvtwLcFJ2QRjJ6466VF66[/tex][tex=13.071x4.071]ECT5YibvB8F5BmBGWvWU2SvDCm0o1lTrck0N6LJAmE0DyZWGy7LdE+Mg1N6S33yVsvGRA/EcBJgVhhKgwnAwEg==[/tex][img=719x145]17767f761c45ad1.png[/img]故当[tex=5.5x2.357]VUFvrAWv1vKBsV8gbKuIAW4wi20fl4pPstNaKvbrO9w=[/tex]时,这反常积分取得最小值.

    内容

    • 0

      对于反常积分[tex=9.286x2.929]ED5ldIgITkqa/bhnUtQnkwg8Sh/bySse7//cyxYlFdJavBCcMDeFYzORergGfMp92vBtFaDK4Oa824+weGpQNg==[/tex],[tex=0.571x1.0]CQkpoDeAAI+5FKIfe1wVCA==[/tex]为何值时收敛,[tex=0.571x1.0]CQkpoDeAAI+5FKIfe1wVCA==[/tex]为何值时发散?

    • 1

      当[tex=0.571x1.286]pc/qlnA3cxu8Ag9jp3tYHQ==[/tex]为何值时,广义积分[tex=6.071x2.429]p0+OH7YNKfNLWlS8e6PskjUtyopvOuo/tvBuTNUeY6PJxrsQc3E/JydvDYEgBDy6YEPU2lfw+ksgLS+lm6P50A==[/tex]收敛?当[tex=0.571x1.286]pc/qlnA3cxu8Ag9jp3tYHQ==[/tex]为何值时,这广义积分发散?又当[tex=0.571x1.286]pc/qlnA3cxu8Ag9jp3tYHQ==[/tex]为何值时,这广义积分取得最小值?

    • 2

      讨论[tex=0.571x1.0]CQkpoDeAAI+5FKIfe1wVCA==[/tex]k为何值时,积分[tex=8.143x2.714]e9oQ943V2m5fRKvsnmySKCIPw+Ys6itFOoHwokETrYEs+5bcgDVsq72HXUUtkSF+[/tex]收敛?又为何值时发散?

    • 3

      设 [tex=13.0x4.214]ACpG7W/lXiEwdW69ASBj89VuE0FUo5hY+ev/XmQQZBlVXk6hzhOZ6KhZHD5lGrgbxvCjnXMMNCOQvYWx/0oc1QdZknrD2/y9PSLXqHtRotihn/gjjtRsCt1f+ee9HVWZirU33xzciyH3tvbDVq1ZJg==[/tex](其中 [tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex]为常数)问当 [tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex] 取何值时,函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在其定义域内连续?为什么?

    • 4

      证明一个 [tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex] 一循环置换的阶是 [tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex].