A: $\frac{298}{900}$
B: $\frac{299}{900}$
C: $\frac{301}{900}$
D: $\frac{1}{3}$
举一反三
- 题目包含多个选项,但学生只能选择一个答案。1、连续地掷一枚骰子80次,求点数之和超过300的概率. A: $1-\Phi(\frac{296.5}{\sqrt{35/12}})$ B: $\Phi(\frac{20}{\sqrt{700/3}})$ C: $1-\Phi(\frac{20}{\sqrt{700/3}})$ D: $\Phi(\frac{296.5}{\sqrt{35/12}})$
- 已知三阶矩阵`A`的特征值为`-1,1,2`,`A^**`表示`A`的伴随阵,则矩阵` B=(3A^**)^{-1} ` 的特征值为( ) A: `1,-1,2`; B: `\frac{1}{6},-\frac{1}{6},-\frac{1}{3}`; C: `-\frac{1}{6},\frac{1}{6},\frac{1}{3}`; D: `\frac{1}{2},-\frac{1}{2},-1`。
- 设λ=2是可逆矩阵A的一个特征值,则(\frac{1}{3}A2)-1+E的一个特征值是() A: \frac{7}{3} B: \frac{1}{3} C: \frac{7}{4} D: \frac{5}{2}
- 设随机变量 \( X \) 在区间 \( \left[ {2,5} \right] \) 上服从均匀分布,对 \( X \) 进行三次独立的观测中,则刚好有两次的观测值大于3的概率为( )。 A: \(C_3^1 (\frac{1}{3})^2(\frac{2}{3})\) B: \(C_3^1 (\frac{1}{3})(\frac{2}{3})\) C: \(C_3^2 (\frac{1}{3})^2(\frac{2}{3})\) D: \(C_3^2 (\frac{1}{3})(\frac{2}{3})^2\)
- 微分方程\(y''-2y'-3y=3x+1\)的一个特解是( )。 A: \(y=-x+\frac{1}{3}\) B: \(y=x+\frac{1}{3}\) C: \(y=x^2+\frac{1}{3}\) D: \(y=x^2-\frac{1}{3}\)
内容
- 0
微分方程$y' = \sqrt{x},y(1)=0$的解为 A: $ \frac{2}{3} x^{\frac{3}{2}} + C $ B: $ \frac{2}{3} x^{\frac{3}{2}} -\frac{2}{3} $ C: $ x^{\frac{3}{2}}-1 $ D: $ x^{\frac{3}{2}}+C $
- 1
(4). 掷两颗骰子,至少有一颗骰子出现6点的概率为多少?如果掷出的两颗骰子出现的点数不一样,至少有一颗骰子出现6点的概率为( )。 A: \(\frac{11}{36},\frac{4}{9}\) B: \(\frac{1}{6},\frac{7}{36}\) C: \(\frac{11}{36},\frac{1}{3}\) D: \(\frac{1}{3},\frac{1}{36}\)
- 2
将函数\(f(x)=\sin^4 x\)展开成Fourier级数为 ____ . A: \(f(x) = \frac{3}{8}-\frac{1}{2}\cos 2x +\frac{1}{8}cos 4x\) B: \(f(x) = \frac{1}{4}-\frac{1}{2}\cos x +\frac{3}{8}cos 4x\) C: \(f(x) = \frac{1}{4}-\frac{1}{2}\sin 2x -\frac{3}{8}cos 4x\) D: \(f(x) = \frac{3}{8}-\frac{1}{2}\sin x -\frac{1}{8}cos 4x\)
- 3
(10). 已知在5重贝努里试验中成功的次数 \( X \) 满足 \( P\{X=1\}=P\{X=2\} \),则概率 \( P\{X=4\}= \)( )。 A: \(1- C_4^5 (\frac{1}{3})^4(\frac{2}{3}) \) B: \( C_5^4 (\frac{1}{3})^2(\frac{2}{3})^3 \) C: \( C_5^4 (\frac{1}{3})^4(\frac{2}{3})^4 \) D: \( C_5^4 (\frac{1}{3})^4(\frac{2}{3}) \)
- 4
Solve $\int_{-\frac{1}{2}}^1{1-x^2}dx=$? A: $\frac{\pi}{3}+\frac{\sqrt{3}}{8}$. B: $\frac{\pi}{2}$. C: $\frac{\pi}{6}+\frac{\sqrt{3}}{4}$. D: $\frac{\pi}{4}$.